On Coresets for Support Vector Machines
暂无分享,去创建一个
Murad Tukan | Dan Feldman | Cenk Baykal | Daniela Rus | D. Rus | Dan Feldman | Cenk Baykal | D. Rus | M. Tukan
[1] D. Rus,et al. Provable Filter Pruning for Efficient Neural Networks , 2019, ICLR.
[2] Dan Feldman,et al. Core‐sets: An updated survey , 2019, WIREs Data Mining Knowl. Discov..
[3] Dan Feldman,et al. Deterministic Coresets for Stochastic Matrices with Applications to Scalable Sparse PageRank , 2019, TAMC.
[4] Konstantin Makarychev,et al. Performance of Johnson-Lindenstrauss transform for k-means and k-medians clustering , 2018, STOC.
[5] Dan Feldman,et al. Data-Dependent Coresets for Compressing Neural Networks with Applications to Generalization Bounds , 2018, ICLR.
[6] Andreas Krause,et al. Training Mixture Models at Scale via Coresets , 2017 .
[7] Andreas Krause,et al. Practical Coreset Constructions for Machine Learning , 2017, 1703.06476.
[8] Christopher Ré,et al. Weighted SGD for ℓp Regression with Randomized Preconditioning , 2015, SODA.
[9] Vladimir Braverman,et al. New Frameworks for Offline and Streaming Coreset Constructions , 2016, ArXiv.
[10] Michael B. Cohen,et al. Dimensionality Reduction for k-Means Clustering and Low Rank Approximation , 2014, STOC.
[11] Sharath Raghvendra,et al. Accurate Streaming Support Vector Machines , 2014, ArXiv.
[12] Pramod P. Khargonekar,et al. Fast SVM training using approximate extreme points , 2013, J. Mach. Learn. Res..
[13] Trupti M. Kodinariya,et al. Review on determining number of Cluster in K-Means Clustering , 2013 .
[14] Nathan Srebro,et al. Beating SGD: Learning SVMs in Sublinear Time , 2011, NIPS.
[15] Michael Langberg,et al. A unified framework for approximating and clustering data , 2011, STOC.
[16] David P. Woodruff,et al. Sublinear Optimization for Machine Learning , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[17] Pankaj K. Agarwal,et al. Streaming Algorithms for Extent Problems in High Dimensions , 2010, SODA '10.
[18] L. Schulman,et al. Universal ε-approximators for integrals , 2010, SODA '10.
[19] Suresh Venkatasubramanian,et al. Streamed Learning: One-Pass SVMs , 2009, IJCAI.
[20] Martin Jaggi,et al. Coresets for polytope distance , 2009, SCG '09.
[21] Kenneth L. Clarkson,et al. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm , 2008, SODA '08.
[22] Stéphane Canu,et al. Comments on the "Core Vector Machines: Fast SVM Training on Very Large Data Sets" , 2007, J. Mach. Learn. Res..
[23] Yoram Singer,et al. Pegasos: primal estimated sub-gradient solver for SVM , 2007, ICML '07.
[24] I. Tsang,et al. Simpler core vector machines with enclosing balls , 2007, ICML '07.
[25] Sergei Vassilvitskii,et al. k-means++: the advantages of careful seeding , 2007, SODA '07.
[26] Dan Roth,et al. Maximum Margin Coresets for Active and Noise Tolerant Learning , 2007, IJCAI.
[27] Kasturi R. Varadarajan,et al. Geometric Approximation via Coresets , 2007 .
[28] Thorsten Joachims,et al. Training linear SVMs in linear time , 2006, KDD '06.
[29] Ivor W. Tsang,et al. Core Vector Machines: Fast SVM Training on Very Large Data Sets , 2005, J. Mach. Learn. Res..
[30] Sariel Har-Peled,et al. On coresets for k-means and k-median clustering , 2004, STOC '04.
[31] Kenneth L. Clarkson,et al. Smaller core-sets for balls , 2003, SODA '03.
[32] Yi Li,et al. Improved bounds on the sample complexity of learning , 2000, SODA '00.
[33] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[34] C. Lingard,et al. Book Review: The Challenge of Red China , 1946 .