Efficient machine learning of solute segregation energy based on physics-informed features

[1]  C. Paredis,et al.  Atomistic and machine learning studies of solute segregation in metastable grain boundaries , 2022, Scientific Reports.

[2]  M. Tschopp,et al.  Machine Learning to Predict Aluminum Segregation to Magnesium Grain Boundaries , 2021, SSRN Electronic Journal.

[3]  I. Kevrekidis,et al.  Physics-informed machine learning , 2021, Nature Reviews Physics.

[4]  Z. Pan,et al.  Segregation competition and complexion coexistence within a polycrystalline grain boundary network , 2021, 2103.16678.

[5]  Y. Mishin Machine-Learning Interatomic Potentials for Materials Science , 2021, SSRN Electronic Journal.

[6]  J. Nie,et al.  Unusual solute segregation phenomenon in coherent twin boundaries , 2021, Nature Communications.

[7]  F. Sansoz,et al.  Heterogeneous solute segregation suppresses strain localization in nanocrystalline Ag-Ni alloys , 2020 .

[8]  M. Wagih,et al.  Learning grain boundary segregation energy spectra in polycrystals , 2020, Nature Communications.

[9]  Chi Chen,et al.  Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy , 2019, npj Computational Materials.

[10]  C. Wang,et al.  Development of a semi-empirical potential suitable for molecular dynamics simulation of vitrification in Cu-Zr alloys. , 2019, The Journal of chemical physics.

[11]  R. Ott,et al.  Ideal maximum strengths and defect-induced softening in nanocrystalline-nanotwinned metals , 2019, Nature Materials.

[12]  Conrad W. Rosenbrock,et al.  Machine-learned interatomic potentials for alloys and alloy phase diagrams , 2019, npj Computational Materials.

[13]  X. Jiang,et al.  Grain boundary segregation and intermetallic precipitation in coarsening resistant nanocrystalline aluminum alloys , 2019, Acta Materialia.

[14]  B. Grabowski,et al.  A machine learning approach to model solute grain boundary segregation , 2018, npj Computational Materials.

[15]  F. Sansoz,et al.  Development of a semi-empirical potential for simulation of Ni solute segregation into grain boundaries in Ag , 2018, Modelling and Simulation in Materials Science and Engineering.

[16]  Jian Luo,et al.  Quantum-accurate spectral neighbor analysis potential models for Ni-Mo binary alloys and fcc metals , 2018, Physical Review B.

[17]  J. Rottler,et al.  Ab initio modelling of solute segregation energies to a general grain boundary , 2017 .

[18]  G. Sha,et al.  Grain boundary stability governs hardening and softening in extremely fine nanograined metals , 2017, Science.

[19]  Z. Pan,et al.  Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility , 2016, Nature Communications.

[20]  Z. Pan,et al.  Effect of grain boundary character on segregation-induced structural transitions , 2016, 1601.06189.

[21]  David J Srolovitz,et al.  Topological framework for local structure analysis in condensed matter , 2015, Proceedings of the National Academy of Sciences.

[22]  G. P. P. Pun,et al.  Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation , 2015 .

[23]  Z. Pan,et al.  Amorphous intergranular films as toughening structural features , 2015, 1501.04996.

[24]  M. Mendelev,et al.  Anisotropy of the solid–liquid interface properties of the Ni–Zr B33 phase from molecular dynamics simulation , 2015 .

[25]  Q. Wei,et al.  The nature behind the preferentially embrittling effect of impurities on the ductility of tungsten , 2014 .

[26]  Christian Trott,et al.  Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials , 2014, J. Comput. Phys..

[27]  R. Kondor,et al.  On representing chemical environments , 2012, 1209.3140.

[28]  C. Schuh,et al.  Design of Stable Nanocrystalline Alloys , 2012, Science.

[29]  Jian Luo,et al.  Developing grain boundary diagrams as a materials science tool: A case study of nickel-doped molybdenum , 2011 .

[30]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[31]  G. P. P. Pun,et al.  Development of an interatomic potential for the Ni-Al system , 2009 .

[32]  J. Hoyt,et al.  Development of interatomic potentials appropriate for simulation of solid–liquid interface properties in Al–Mg alloys , 2009 .

[33]  Jian Luo,et al.  Grain boundary wetting and prewetting in Ni-doped Mo , 2009 .

[34]  Henry H. Wu,et al.  Cu/Ag EAM potential optimized for heteroepitaxial diffusion from ab initio data , 2009, 0901.0861.

[35]  W. Craig Carter,et al.  Diffuse interface model for structural transitions of grain boundaries , 2006 .

[36]  Seungwu Han,et al.  Effect of Fe segregation on the migration of a non-symmetric ∑5 tilt grain boundary in Al , 2005 .

[37]  Y. Mishin,et al.  Interatomic potentials for atomistic simulations of the Ti-Al system , 2003, cond-mat/0306298.

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[40]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[41]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[42]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .