Dynamic linear response quantum algorithm

The dynamic linear response of a quantum system is critical for understanding both the structure and dynamics of strongly interacting quantum systems, including neutron scattering from materials, photon and electron scattering from atomic systems, and electron and neutrino scattering by nuclei. We present a general algorithm for universal quantum computers to calculate the dynamic linear response function with controlled errors and to obtain information about specific final states that can be directly compared to experimental observations.

[1]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[2]  Geoffrey B. West,et al.  Electron scattering from atoms, nuclei and nucleons , 1975 .

[3]  R. Feynman Simulating physics with computers , 1999 .

[4]  V. F. Sears Scaling and final-state interactions in deep-inelastic neutron scattering , 1984 .

[5]  M. Lüscher,et al.  Volume dependence of the energy spectrum in massive quantum field theories , 1986 .

[6]  Jarrell,et al.  Quantum Monte Carlo simulations and maximum entropy: Dynamics from imaginary-time data. , 1991, Physical review. B, Condensed matter.

[7]  M. Lüscher Two-particle states on a torus and their relation to the scattering matrix , 1991 .

[8]  Carlson,et al.  Euclidean proton response in light nuclei. , 1992, Physical review letters.

[9]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[10]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  Abdul J. Jerri The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations , 1998 .

[12]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  G. D’Ariano,et al.  Maximum-likelihood estimation of the density matrix , 1999, quant-ph/9909052.

[14]  Haobin Wang,et al.  Calculating the thermal rate constant with exponential speedup on a quantum computer , 1998, quant-ph/9807009.

[15]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[16]  D. DiVincenzo,et al.  Problem of equilibration and the computation of correlation functions on a quantum computer , 1998, quant-ph/9810063.

[17]  E. Knill,et al.  Quantum algorithms for fermionic simulations , 2000, cond-mat/0012334.

[18]  E. Knill,et al.  Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.

[19]  Dean Lee Nuclear lattice simulations with chiral effective field theory , 2004, nucl-th/0402072.

[20]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[21]  Masahito Ueda,et al.  NONUNITARY QUANTUM CIRCUIT , 2005 .

[22]  A. Bulgac,et al.  Spin 1/2 fermions in the unitary regime: a superfluid of a new type. , 2005, Physical review letters.

[23]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[24]  D. Day,et al.  Inclusive quasielastic electron-nucleus scattering , 2006, nucl-ex/0603029.

[25]  X. Jiang,et al.  Probing Cold Dense Nuclear Matter , 2008, Science.

[26]  Dean Lee Lattice simulations for few- and many-body systems , 2008, 0804.3501.

[27]  I. Kassal,et al.  Preparation of many-body states for quantum simulation. , 2008, The Journal of chemical physics.

[28]  D. Poulin,et al.  Preparing ground States of quantum many-body systems on a quantum computer. , 2008, Physical review letters.

[29]  K. Schmidt,et al.  Auxiliary-field quantum Monte Carlo method for strongly paired fermions , 2011, 1107.5848.

[30]  F. Verstraete,et al.  Quantum Metropolis sampling , 2009, Nature.

[31]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[32]  Matthias Christandl,et al.  Reliable quantum state tomography. , 2011, Physical review letters.

[33]  Franco Nori,et al.  Quantum algorithm for obtaining the energy spectrum of a physical system , 2012 .

[34]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[35]  Nuruzzaman,et al.  Probing the repulsive core of the nucleon-nucleon interaction via the (4)He(e,e'pN) triple-coincidence reaction. , 2014, Physical review letters.

[36]  Momentum sharing in imbalanced Fermi systems , 2014, Science.

[37]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[38]  S. Sharpe,et al.  Expressing the three-particle finite-volume spectrum in terms of the three-to-three scattering amplitude , 2015, 1504.04248.

[39]  Hefeng Wang,et al.  Quantum algorithm for obtaining the eigenstates of a physical system , 2015, 1510.00820.

[40]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[41]  M. Yung,et al.  Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.

[42]  D. Berry,et al.  Improved techniques for preparing eigenstates of fermionic Hamiltonians , 2017, 1711.10460.

[43]  R. Pooser,et al.  Cloud Quantum Computing of an Atomic Nucleus. , 2018, Physical Review Letters.

[44]  Alán Aspuru-Guzik,et al.  Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.

[45]  Damian S. Steiger,et al.  Quantum Algorithm for Spectral Measurement with a Lower Gate Count. , 2017, Physical review letters.