Analog circuits sizing using the fixed point iteration algorithm with transistor compact models

This paper presents an algorithm, based on the fixed point iteration, to solve for sizes and biases using transistor compact models such as BSIM3v3, BSIM4, PSP and EKV. The proposed algorithm simplifies the implementation of sizing and biasing operators. Sizing and biasing operators were originally proposed in the hierarchical sizing and biasing methodology. They allow to compute transistors sizes and biases based on transistor compact models while respecting designer's hypotheses. Computed sizes and biases are accurate, and guarantee the correct electrical behavior as expected by the designer. Sizing and biasing operators interface with a Spice-like simulator, allowing possible use of all available compact models for circuit sizing and biasing over different technologies. To illustrate the effectiveness of the proposed algorithm, a folded cascode OTA was efficiently sized with a 130 nm process, then was migrated to a 65 nm technology. Both sizing and migration were performed in a few milliseconds.

[1]  Maher Kayal,et al.  Structured Analog CMOS Design , 2008 .

[2]  Andreas Kaiser,et al.  Hierarchical sizing and biasing of analog firm intellectual properties , 2013, Integr..

[3]  Marc Neveu,et al.  The Local Fractional Derivative of Fractal Curves , 2008, 2008 IEEE International Conference on Signal Image Technology and Internet Based Systems.

[4]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[5]  J. M. Rochelle,et al.  A CAD methodology for optimizing transistor current and sizing in analog CMOS design , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  J. F. Traub,et al.  Comparison of iterative methods for the calculation of nth roots , 1961 .

[7]  I. Podlubny,et al.  On Fractional Derivatives, Fractional-Order Dynamic Systems and PIW-controllers , 1997 .

[8]  Trond Ytterdal,et al.  Analog Circuit Design in Nanoscale CMOS Technologies , 2009, Proceedings of the IEEE.

[9]  P.R. Gray,et al.  OPASYN: a compiler for CMOS operational amplifiers , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[11]  Igor Podlubny,et al.  Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation , 2001, math/0110241.

[12]  Rob A. Rutenbar,et al.  Synthesis of HighPerformance Analog Circuits in ASTRX/OBLX , 2002 .

[13]  Eduard Petlenkov,et al.  FOMCON: Fractional-order modeling and control toolbox for MATLAB , 2011, Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011.

[14]  B. Maundy,et al.  On a multivibrator that employs a fractional capacitor , 2009 .

[15]  Ramy Iskander,et al.  Analog circuits sizing using bipartite graphs , 2011, 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS).

[16]  Andras Varga,et al.  Balancing free square-root algorithm for computing singular perturbation approximations , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[17]  C. Halijak,et al.  Approximation of Fractional Capacitors (1/s)^(1/n) by a Regular Newton Process , 1964 .

[18]  Georges G. E. Gielen,et al.  AMGIE-A synthesis environment for CMOS analog integrated circuits , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  S. Roy On the Realization of a Constant-Argument Immittance or Fractional Operator , 1967, IEEE Transactions on Circuit Theory.

[20]  Méthodes et techniques de l'analyse numérique , 1971 .

[21]  Ramy Iskander,et al.  Simulation-based hierarchical sizing and biasing of analog firm IPs , 2009, 2009 IEEE Behavioral Modeling and Simulation Workshop.

[22]  Alberto L. Sangiovanni-Vincentelli,et al.  DELIGHT.SPICE: an optimization-based system for the design of integrated circuits , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[23]  Rob A. Rutenbar,et al.  Synthesis of high-performance analog circuits in ASTRX/OBLX , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[24]  E. Petlenkov,et al.  Application of the newton method to first-order implicit fractional transfer function approximation , 2012, Proceedings of the 19th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2012.

[25]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[26]  Rob A. Rutenbar,et al.  ANACONDA: robust synthesis of analog circuits via stochastic pattern search , 1999, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.99CH36327).

[27]  E. Vittoz,et al.  An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications , 1995 .

[28]  Alberto Sangiovanni-Vincentelli,et al.  SPICE: An optimization-based system for the design of integrated circuits , 1988, ICCAD 1988.

[29]  E. Petlenkov,et al.  Implementation and real-time simulation of a fractional-order controller using a MATLAB based prototyping platform , 2012, 2012 13th Biennial Baltic Electronics Conference.

[30]  Alain Oustaloup,et al.  The CRONE toolbox for Matlab , 2000, CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537).

[31]  Eric A. Vittoz,et al.  IDAC: an interactive design tool for analog CMOS circuits , 1987 .

[32]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[33]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[34]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[35]  I. Podlubny,et al.  On fractional derivatives, fractional-order dynamic systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[36]  Rob A. Rutenbar,et al.  OASYS: a framework for analog circuit synthesis , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[37]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[38]  B. Onaral,et al.  Fractal system as represented by singularity function , 1992 .

[39]  Marc Pastre,et al.  PAD: A New Interactive Knowledge-Based Analog Design Approach , 2005 .

[40]  Rob A. Rutenbar,et al.  MAELSTROM: efficient simulation-based synthesis for custom analog cells , 1999, DAC '99.

[41]  A. J. Calderón,et al.  AUTO-TUNING OF FRACTIONAL LEAD-LAG COMPENSATORS , 2005 .

[42]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[43]  William Liu,et al.  MOSFET Models for SPICE Simulation: Including BSIM3v3 and BSIM4 , 2001 .