Instantaneous Ambiguity Resolution in Global-Navigation-Satellite-System-Based Attitude Determination Applications: A Multivariate Constrained Approach

Carrier phase integer ambiguity resolution is the key to high-precisionGlobal Navigation Satellite System (GNSS) positioning, navigation, and attitude determination. It is the process of resolving the unknown cycle ambiguities of the carrier phase data as integers. After ambiguity resolution, precise baseline estimates become available, which can be used to derive the attitude of a multi-antenna platform. The purpose of this contribution is to present and test a rigorous GNSS-based attitude determination method, optimally exploiting the complete set of geometrical constraints. The key to this new method is an extension of the popular LAMBDA method: the multivariate constrained LAMBDA. The method estimates the integer ambiguities and the platform’s attitude in an integral manner, fully exploiting the known body geometry of the multi-antenna configuration. As a result, the ambiguity resolution performance is greatly improved. The method is extensively tested addressing the most challenging scenario: single-epoch single-frequency GNSS observations are processed without any filtering, external aid, or dynamic modeling.

[1]  Itzhack Y. Bar-Itzhack,et al.  Algorithms for Attitude Determination Using the Global Positioning System , 1998 .

[2]  Oliver Montenbruck,et al.  GPS-Based Attitude Determination for Microsatellites , 2007 .

[3]  E. Glenn Lightsey,et al.  Robust spacecraft attitude determination using global positioning system receivers , 2003 .

[4]  Jan Wendel,et al.  A Modified Lambda Method for Ambiguity Resolution in the Presence of Position Domain Constraints , 2005 .

[5]  Peter Teunissen,et al.  Influence of ambiguity precision on the success rate of GNSS integer ambiguity bootstrapping , 2007 .

[6]  P. Teunissen A canonical theory for short GPS baselines. Part I: The baseline precision , 1997 .

[7]  J. X. Wang,et al.  The Application of the LAMBDA Method in the Estimation of the GPS Slant Wet Vapour , 2009 .

[8]  Keck Voon Ling,et al.  Real-time Attitude Determination for Microsatellite by Lambda Method Combined with Kalman Filtering , 2004 .

[9]  P. J. G. Teunissen,et al.  Instantaneous Global Navigation Satellite System (GNSS)-Based Attitude Determination for Maritime Applications , 2012, IEEE Journal of Oceanic Engineering.

[10]  Sandra Verhagen,et al.  New Global Navigation Satellite System Ambiguity Resolution Method Compared to Existing Approaches , 2006 .

[11]  F. Markley,et al.  Quaternion Attitude Estimation Using Vector Observations , 2000 .

[12]  P. Schönemann,et al.  A generalized solution of the orthogonal procrustes problem , 1966 .

[13]  Andrew Simsky,et al.  Attitude Determination Methods Used in the PolaRx2@ Multi-antenna GPS Receiver , 2005 .

[14]  Craig Hill,et al.  Attltude Determination: Exploiting all Information for Optimal Ambiguity Resolution , 1995 .

[15]  Bradford W. Parkinson,et al.  Space Flight Tests of Attitude Determination Using GPS , 1993 .

[16]  Peter Teunissen A canonical theory for short GPS baselines. Part III: the geometry of the ambiguity search space , 1997 .

[17]  Peter Teunissen,et al.  Integer least-squares theory for the GNSS compass , 2010 .

[18]  Peter Teunissen,et al.  GPS for geodesy , 1996 .

[19]  M. S. Hodgart,et al.  New approach to resolving instantaneous integer ambiguity resolution for spacecraft attitude determination using GPS signals , 2000, IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062).

[20]  Peter Teunissen,et al.  Integer estimation in the presence of biases , 2001 .

[21]  Daniele Mortari,et al.  How to Estimate Attitude from Vector Observations , 1999 .

[22]  John B. Schleppe,et al.  Development of a real-time attitude system using a quaternion parameterization and non-dedicated GPS receivers , 1996 .

[23]  Peter Buist The Baseline Constrained LAMBDA Method for Single Epoch, Single Frequency Attitude Determination Applications , 2007 .

[24]  P. Enge,et al.  GPS attitude determination for a JPALS testbed: Integer initialization and testing , 2004, PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556).

[25]  M. Shuster,et al.  Three-axis attitude determination from vector observations , 1981 .

[26]  P. Teunissen An optimality property of the integer least-squares estimator , 1999 .

[27]  Peter Teunissen,et al.  A canonical theory for short GPS baselines. Part II: the ambiguity precision and correlation , 1997 .

[28]  M. D. Shuster Approximate algorithms for fast optimal attitude computation , 1978 .

[29]  E. Glenn Lightsey,et al.  Global Positioning System Integer Ambiguity Resolution Without Attitude Knowledge , 1999 .

[30]  Bo Wang,et al.  A constrained LAMBDA method for GPS attitude determination , 2009 .

[31]  G. Giorgi A Search and Shrink Approach for the Baseline Constrained LAMBDA : Experimental Results , 2008 .

[32]  E. Glenn Lightsey,et al.  Real time attitude independent GPS integer ambiguity resolution , 2003 .

[33]  C. Roberts,et al.  On-the-fly GPS-based attitude determination using single- and double-differenced carrier phase measurements , 2004 .

[34]  John L. Crassidis,et al.  NEW ALGORITHM FOR ATTITUDE DETERMINATION USING GLOBAL POSITIONING SYSTEM SIGNALS , 1997 .

[35]  G. Wahba A Least Squares Estimate of Satellite Attitude , 1965 .

[36]  M. Shuster A survey of attitude representation , 1993 .

[37]  Gabriele Giorgi,et al.  Testing of a new single-frequency GNSS carrier phase attitude determination method: land, ship and aircraft experiments , 2011 .

[38]  P. Teunissen Least-squares estimation of the integer GPS ambiguities , 1993 .

[39]  Tughrul Arslan,et al.  Fault Tolerant and Adaptive GPS Attitude Determination System , 2009, 2009 IEEE Aerospace conference.

[40]  Wang Hui LAMBDA METHOD FOR RIGID BODY ATTITUDE DETERMINATION BASED ON GPS , 2001 .

[41]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[42]  Oliver Montenbruck,et al.  Precise GRACE baseline determination using GPS , 2005 .

[43]  Martin Unwin,et al.  Stand-alone spacecraft attitude determination using real flight GPS data from UOSAT-12 , 2002 .

[44]  Duncan B. Cox,et al.  Integration of LAMBDA Ambiguity Resolution with Kalman Filter for Relative Navigation of Spacecraft , 2000 .

[45]  Richard B. Langley,et al.  GPS Ambiguity Resolution and Validation: Methodologies, Trends and Issues , 2000 .

[46]  Simon Corbett GPS for Attitude Determination and Positioning in Airborne Remote Sensing , 1993 .

[47]  Daniele Mortari,et al.  Second Estimator of the Optimal Quaternion , 2000 .

[48]  F. Markley Attitude determination using vector observations: A fast optimal matrix algorithm , 1993 .

[49]  Mark L. Psiaki,et al.  Batch Algorithm for Global-Positioning-System Attitude Determination and Integer Ambiguity Resolution , 2006 .

[50]  T. Bell,et al.  Global Positioning System-Based Attitude Determination and the Orthogonal Procrustes Problem , 2003 .

[51]  Peter Teunissen,et al.  Nonlinear least squares , 1990 .

[52]  P. B. Davenport A vector approach to the algebra of rotations with applications , 1968 .

[53]  Xiaoli Ding,et al.  Single epoch ambiguity resolution for Galileo with the CAR and LAMBDA methods , 2007 .

[54]  Peter Teunissen,et al.  The success rate and precision of GPS ambiguities , 2000 .

[55]  Gabriele Giorgi,et al.  Correcting Strapdown GPS/INS Gravimetry Estimates with GPS Attitude Data , 2010 .

[56]  Oliver Montenbruck,et al.  GPS Based Attitude Determination for the Flying Laptop Satellite , 2008 .

[57]  R.A. Brown Instantaneous GPS attitude determination , 1992, IEEE PLANS 92 Position Location and Navigation Symposium Record.

[58]  Peter Teunissen,et al.  A canonical theory for short GPS baselines. Part IV: precision versus reliability , 1997 .

[59]  P. Teunissen,et al.  Performance of the LAMBDA Method for Fast GPS Ambiguity Resolution , 1997 .

[60]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[61]  James R. Wertz,et al.  Spacecraft attitude determination and control , 1978 .

[62]  Andrew Simsky,et al.  COMPARISON OF ATTITUDE PERFORMANCE FOR MULTI-ANTENNA RECEIVERS , 2006 .

[63]  Daniele Mortari,et al.  ESOQ: A Closed-Form Solution to the Wahba Problem , 1997 .