Deubiquitinating enzyme BAP1 is involved in the formation and maintenance of the diapause embryos of Artemia

[1]  Ziad M. Eletr,et al.  An Emerging Model for BAP1’s Role in Regulating Cell Cycle Progression , 2011, Cell Biochemistry and Biophysics.

[2]  D. MacCallum,et al.  Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of Candida albicans , 2011, Molecular microbiology.

[3]  Wei-Jun Yang,et al.  Determination in oocytes of the reproductive modes for the brine shrimp Artemia parthenogenetica. , 2011, Bioscience reports.

[4]  G. Hart,et al.  The Ubiquitin Carboxyl Hydrolase BAP1 Forms a Ternary Complex with YY1 and HCF-1 and Is a Critical Regulator of Gene Expression , 2010, Molecular and Cellular Biology.

[5]  T. MacRae Gene expression, metabolic regulation and stress tolerance during diapause , 2010, Cellular and Molecular Life Sciences.

[6]  Anindya Dutta,et al.  The Deubiquitinating Enzyme BAP1 Regulates Cell Growth via Interaction with HCF-1* , 2009, The Journal of Biological Chemistry.

[7]  A. Warner,et al.  Characterization of a group 1 late embryogenesis abundant protein in encysted embryos of the brine shrimp Artemia franciscana. , 2009, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[8]  V. Dixit,et al.  Association of C-Terminal Ubiquitin Hydrolase BRCA1-Associated Protein 1 with Cell Cycle Regulator Host Cell Factor 1 , 2009, Molecular and Cellular Biology.

[9]  Erwin G. Van Meir,et al.  BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. , 2008, Cancer research.

[10]  Thomas D. Schmittgen,et al.  Analyzing real-time PCR data by the comparative CT method , 2008, Nature Protocols.

[11]  M. Rapé,et al.  Reverse the curse--the role of deubiquitination in cell cycle control. , 2008, Current opinion in cell biology.

[12]  Wei-Jun Yang,et al.  Involvement of p90 Ribosomal S6 Kinase in Termination of Cell Cycle Arrest during Development of Artemia-encysted Embryos* , 2008, Journal of Biological Chemistry.

[13]  A. Sparks,et al.  The Genomic Landscapes of Human Breast and Colorectal Cancers , 2007, Science.

[14]  T. MacRae,et al.  Gene expression in diapause-destined embryos of the crustacean, Artemia franciscana , 2007, Mechanisms of Development.

[15]  Tohru Natsume,et al.  A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes , 2006, The EMBO journal.

[16]  Y. Roshorm,et al.  YHV-protease dsRNA inhibits YHV replication in Penaeus monodon and prevents mortality. , 2006, Biochemical and biophysical research communications.

[17]  René Bernards,et al.  A Genomic and Functional Inventory of Deubiquitinating Enzymes , 2005, Cell.

[18]  T. MacRae,et al.  Oligomerization, Chaperone Activity, and Nuclear Localization of p26, a Small Heat Shock Protein from Artemia franciscana* , 2004, Journal of Biological Chemistry.

[19]  Jennifer L. Harris,et al.  Substrate profiling of deubiquitin hydrolases with a positional scanning library and mass spectrometry. , 2004, Biochemistry.

[20]  Kaori Nishikawa,et al.  Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. , 2003, Human molecular genetics.

[21]  C. Chung,et al.  Deubiquitinating enzymes as cellular regulators. , 2003, Journal of biochemistry.

[22]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[23]  K. Wada,et al.  Loss of Uch-L1 and Uch-L3 leads to neurodegeneration, posterior paralysis and dysphagia. , 2001, Human molecular genetics.

[24]  J. Clegg,et al.  Influence of trehalose on the molecular chaperone activity of p26, a small heat shock/α-crystallin protein , 2001, Cell stress & chaperones.

[25]  G. Dittmar,et al.  Cell Cycle–Regulated Modification of the Ribosome by a Variant Multiubiquitin Chain , 2000, Cell.

[26]  C. Hill,et al.  Structural basis for the specificity of ubiquitin C‐terminal hydrolases , 1999, The EMBO journal.

[27]  M. Yaffe,et al.  A Role for Ubiquitination in Mitochondrial Inheritance in Saccharomyces cerevisiae , 1999, The Journal of cell biology.

[28]  P. Liang,et al.  The synthesis of a small heat shock/alpha-crystallin protein in Artemia and its relationship to stress tolerance during development. , 1999, Developmental biology.

[29]  Keith D Wilkinson,et al.  BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression , 1998, Oncogene.

[30]  K. Wilkinson Regulation of ubiquitin‐dependent processes by deubiquitinating enzymes , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[31]  C. Pickart,et al.  Specificity of the Ubiquitin Isopeptidase in the PA700 Regulatory Complex of 26 S Proteasomes* , 1997, The Journal of Biological Chemistry.

[32]  R. Haguenauer‐Tsapis,et al.  Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein , 1997, The EMBO journal.

[33]  Wei Xu,et al.  Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome , 1997, Nature.

[34]  Sarah Baatout,et al.  Short protocols in molecular biology (3rd edn): by Frederick M. Ausubel, Roger Brent, Robert E. Kingston, David D. Moore, J.G. Seidman, John A. Smith and Kevin Struhl Wiley, 1995. £60.00/$90.00 pbk (750 pages) ISBN 0 47 113781 2 , 1996 .

[35]  C. Larsen,et al.  Substrate binding and catalysis by ubiquitin C-terminal hydrolases: identification of two active site residues. , 1996, Biochemistry.

[36]  S. Hand,et al.  Acute blockage of the ubiquitin-mediated proteolytic pathway during invertebrate quiescence. , 1994, The American journal of physiology.

[37]  C. Larsen,et al.  Comparisons of neuronal (PGP 9.5) and non-neuronal ubiquitin C-terminal hydrolases. , 1992, Biochemical Society transactions.

[38]  A. Varshavsky,et al.  The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses , 1987, Cell.

[39]  J. Clegg,et al.  Cell division during the development ofArtemia salina , 1978, Wilhelm Roux's archives of developmental biology.

[40]  H. Kato,et al.  Cytological Studies of Artemia salina I.Embryonic Development without Cell Multiplication after the Blastula Stage in Encysted Dry Eggs , 1962 .

[41]  T. Ohta,et al.  BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. , 2009, Cancer research.

[42]  J. Clegg,et al.  Artemia: Basic and Applied Biology , 2002, Biology of Aquatic Organisms.

[43]  G. Hofmann,et al.  Extension of enzyme half-life during quiescence in Artemia embryos. , 1993, The American journal of physiology.

[44]  K. Sullivan Short protocols in molecular biology, 2nd Edn , 1992 .

[45]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .