Problems and simulations

In this chapter we give an informal introduction to the multiscale model and present some case studies of interest for applications, along with related numerical simulations. Results presented here are somehow complementary to those usually presented by physicists, engineers, and computer scientists. Indeed, we aim at showing how mathematical modeling can help in developing truthful pedestrian models, and at giving a sample of phenomena which can be simulated without the introduction of artificial or ad hoc effects.

[1]  B. D. Hankin,et al.  Passenger Flow in Subways , 1958 .

[2]  Didier Bresch,et al.  Roughness-Induced Effect at Main Order on the Reynolds Approximation , 2010, Multiscale Model. Simul..

[3]  Daniel R. Montello,et al.  The Perception and Cognition of Environmental Distance: Direct Sources of Information , 1997, COSIT.

[4]  R. Colombo,et al.  A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC , 2011, 1104.2985.

[5]  B. Piccoli,et al.  Time-Evolving Measures and Macroscopic Modeling of Pedestrian Flow , 2008, 0811.3383.

[6]  Bertrand Maury,et al.  Handling congestion in crowd motion modeling , 2011, Networks Heterog. Media.

[7]  Christian Dogbe,et al.  On the modelling of crowd dynamics by generalized kinetic models , 2012 .

[8]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[9]  Mohcine Chraibi,et al.  Generalized centrifugal-force model for pedestrian dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Serge P. Hoogendoorn,et al.  Self-Organization in Pedestrian Flow , 2005 .

[11]  Nicola Bellomo,et al.  On the Modeling of Traffic and Crowds: A Survey of Models, Speculations, and Perspectives , 2011, SIAM Rev..

[12]  John B. Bell,et al.  A Hybrid Particle-Continuum Method for Hydrodynamics of Complex Fluids , 2009, Multiscale Model. Simul..

[13]  Nicola Bellomo,et al.  Modeling crowd dynamics from a complex system viewpoint , 2012 .

[14]  Luca Bruno,et al.  From individual behaviour to an evaluation of the collective evolution of crowds along footbridges , 2016 .

[15]  Luisa Fermo,et al.  A fully-discrete-state kinetic theory approach to traffic flow on road networks , 2014, 1406.4257.

[16]  Norman I. Badler,et al.  Virtual Crowds: Methods, Simulation, and Control , 2008, Virtual Crowds: Methods, Simulation, and Control.

[17]  M. Herty,et al.  Control of the Continuity Equation with a Non Local Flow , 2009, 0902.2623.

[18]  Serge P. Hoogendoorn,et al.  Simulation of pedestrian flows by optimal control and differential games , 2003 .

[19]  Shigeyuki Okazaki 建築空間における歩行のためのシミュレーションモデルの研究 : その 2. 混雑した場所での歩行 , 1979 .

[20]  Dirk Helbing,et al.  Dynamics of crowd disasters: an empirical study. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Héctor J. Sussmann,et al.  Regular Synthesis and Sufficiency Conditions for Optimality , 2000, SIAM J. Control. Optim..

[22]  Dirk Hartmann,et al.  Structured first order conservation models for pedestrian dynamics , 2013, Networks Heterog. Media.

[23]  E. Angelis Nonlinear hydrodynamic models of traffic flow modelling and mathematical problems , 1999 .

[24]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[25]  T. Flash,et al.  Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. , 1995, Journal of experimental psychology. Human perception and performance.

[26]  H. M. Zhang A NON-EQUILIBRIUM TRAFFIC MODEL DEVOID OF GAS-LIKE BEHAVIOR , 2002 .

[27]  Victor J. Blue,et al.  Modeling Four-Directional Pedestrian Flows , 2000 .

[28]  D. R. Montello,et al.  Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places , 2006, Cognitive Psychology.

[29]  Shing Chung Josh Wong,et al.  A review of the two-dimensional continuum modeling approach to transportation problems , 2006 .

[30]  Serge P. Hoogendoorn,et al.  Experimental Research of Pedestrian Walking Behavior , 2003 .

[31]  Jon M. Kerridge,et al.  Laying the foundations: The use of video footage to explore pedestrian dynamics in PED-FLOW , 2002 .

[32]  S. Wong,et al.  A higher-order macroscopic model for pedestrian flows , 2010 .

[33]  Dirk Helbing A Fluid-Dynamic Model for the Movement of Pedestrians , 1992, Complex Syst..

[34]  Michael Schreckenberg,et al.  Pedestrian and evacuation dynamics , 2002 .

[35]  Gerta Köster,et al.  Avoiding numerical pitfalls in social force models. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  W. Gangbo,et al.  Hamiltonian ODEs in the Wasserstein space of probability measures , 2008 .

[37]  Paola Goatin,et al.  The Wave-Front Tracking Algorithm for Hughes' Model of Pedestrian Motion , 2013, SIAM J. Sci. Comput..

[38]  James M. Dabbs join,et al.  Beauty is Power: The Use of Space on the Sidewalk , 1975 .

[39]  Benedetto Piccoli,et al.  Effects of anisotropic interactions on the structure of animal groups , 2009, Journal of mathematical biology.

[40]  Andrew Adamatzky,et al.  Dynamics of crowd-minds , 2005 .

[41]  Bernhard Steffen,et al.  New Insights into Pedestrian Flow Through Bottlenecks , 2009, Transp. Sci..

[42]  Yi Pan,et al.  A Study of Average-Case Speedup and Scalability of Parallel Computations on Static Networks , 1997, PDPTA.

[43]  S. Dai,et al.  Centrifugal force model for pedestrian dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Jo Graham,et al.  Old and new , 2000 .

[45]  Roger L. Hughes,et al.  Towards a mathematical model for stability in pedestrian flows , 2011, Networks Heterog. Media.

[46]  Chi-Wang Shu,et al.  Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm , 2009 .

[47]  Christian Dogbé,et al.  Modeling crowd dynamics by the mean-field limit approach , 2010, Math. Comput. Model..

[48]  A. Schadschneider,et al.  Simulation of pedestrian dynamics using a two dimensional cellular automaton , 2001 .

[49]  Lorenzo Pareschi,et al.  Modeling and Computational Methods for Kinetic Equations , 2012 .

[50]  Dietrich Braess,et al.  Über ein Paradoxon aus der Verkehrsplanung , 1968, Unternehmensforschung.

[51]  A. Mogilner,et al.  Mathematical Biology Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation , 2003 .

[52]  W. Rudin Real and complex analysis , 1968 .

[53]  岡崎 甚幸,et al.  建築空間における歩行のためのシミュレーションモデルの研究 : その 1 磁気モデルの応用による歩行モデル , 1979 .

[54]  Andreas Schadschneider,et al.  Empirical results for pedestrian dynamics and their implications for modeling , 2011, Networks Heterog. Media.

[55]  James M. Dabbs,et al.  Line-following Tendencies Among Pedestrians: A Sex Difference , 1974 .

[56]  Michel Rascle,et al.  Resurrection of "Second Order" Models of Traffic Flow , 2000, SIAM J. Appl. Math..

[57]  Paola Goatin,et al.  Macroscopic modeling and simulations of room evacuation , 2013, 1308.1770.

[58]  Debora Amadori,et al.  The one-dimensional Hughes model for pedestrian flow: Riemann—type solutions , 2012 .

[59]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[60]  Serge P. Hoogendoorn,et al.  Gas-Kinetic Modeling and Simulation of Pedestrian Flows , 2000 .

[61]  M. Falcone,et al.  Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations , 2014 .

[62]  M. Burger,et al.  Mean field games with nonlinear mobilities in pedestrian dynamics , 2013, 1304.5201.

[63]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[64]  Ronald Fedkiw,et al.  Hamilton-Jacobi Equations , 2003 .

[65]  Alfio Quarteroni,et al.  Analysis of a Geometrical Multiscale Model Based on the Coupling of ODE and PDE for Blood Flow Simulations , 2003, Multiscale Model. Simul..

[66]  Christian Dogbé On the numerical solutions of second order macroscopic models of pedestrian flows , 2008, Comput. Math. Appl..

[67]  Massimo Fornasier,et al.  Particle, kinetic, and hydrodynamic models of swarming , 2010 .

[68]  R. Colombo,et al.  Existence of nonclassical solutions in a Pedestrian flow model , 2009 .

[69]  Benedetto Piccoli,et al.  Crowd dynamics: Results and perspectives , 2011 .

[70]  M J Lighthill,et al.  ON KINEMATIC WAVES.. , 1955 .

[71]  P. Markowich,et al.  On the Hughes' model for pedestrian flow: The one-dimensional case , 2011 .

[72]  V. Coscia,et al.  FIRST-ORDER MACROSCOPIC MODELLING OF HUMAN CROWD DYNAMICS , 2008 .

[73]  Dirk Helbing,et al.  Optimal self-organization , 1999 .

[74]  Roger L. Hughes,et al.  A continuum theory for the flow of pedestrians , 2002 .

[75]  Robert Lloyd,et al.  Systematic Distortions in Urban Cognitive Maps , 1987 .

[76]  E. Goffman Relations in Public: Microstudies of the Public Order , 1971 .

[77]  Nizar Touzi,et al.  Paris-Princeton Lectures on Mathematical Finance 2002 , 2003 .

[78]  Jim Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[79]  Roger L. Hughes,et al.  The flow of large crowds of pedestrians , 2000 .

[80]  Harold J Payne,et al.  MODELS OF FREEWAY TRAFFIC AND CONTROL. , 1971 .

[81]  Pierre Degond,et al.  Continuum limit of self-driven particles with orientation interaction , 2007, 0710.0293.

[82]  Michael Herty,et al.  A Macro-kinetic Hybrid Model for Traffic Flow on Road Networks , 2009, Comput. Methods Appl. Math..

[83]  E. Tadmor,et al.  From particle to kinetic and hydrodynamic descriptions of flocking , 2008, 0806.2182.

[84]  Benedetto Piccoli,et al.  Multiscale Modeling of Granular Flows with Application to Crowd Dynamics , 2010, Multiscale Model. Simul..

[85]  L. F. Henderson On the fluid mechanics of human crowd motion , 1974 .

[86]  Dirk Helbing,et al.  A mathematical model for the behavior of pedestrians , 1991, cond-mat/9805202.

[87]  Bertrand Maury,et al.  Un Modèle de Mouvements de Foule , 2007 .

[88]  Paolo Frasca,et al.  Existence and approximation of probability measure solutions to models of collective behaviors , 2010, Networks Heterog. Media.

[89]  Vassilis Kostakos,et al.  Instrumenting the City: Developing Methods for Observing and Understanding the Digital Cityscape , 2006, UbiComp.

[90]  Fabio S. Priuli,et al.  Modeling Rationality to Control Self-Organization of Crowds: An Environmental Approach , 2014, SIAM J. Appl. Math..

[91]  Torsten Kraft,et al.  An efficient method for coupling microscopic and macroscopic calculations in solidification modelling , 1997 .

[92]  Robert Herman,et al.  Kinetic theory of vehicular traffic , 1971 .

[93]  Mikko Lindholm,et al.  Identifying people from gait pattern with accelerometers , 2005, SPIE Defense + Commercial Sensing.

[94]  Luc Mieussens,et al.  A multiscale kinetic-fluid solver with dynamic localization of kinetic effects , 2009, J. Comput. Phys..

[95]  Jean-Paul Laumond,et al.  An Optimality Principle Governing Human Walking , 2008, IEEE Transactions on Robotics.

[96]  Nick Tyler,et al.  Understanding capacity drop for designing pedestrian environments , 2005 .

[97]  Andreas Schadschneider,et al.  Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics , 2002 .

[98]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[99]  Axel Klar,et al.  Traffic flow: models and numerics , 2004 .

[100]  Victor J. Blue,et al.  Cellular Automata Microsimulation of Bidirectional Pedestrian Flows , 1999 .

[101]  B. Piccoli,et al.  Transport Equation with Nonlocal Velocity in Wasserstein Spaces: Convergence of Numerical Schemes , 2011, 1106.2555.

[102]  Lorenzo Pareschi,et al.  Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences , 2010 .

[103]  Michel Bierlaire,et al.  Discrete Choice Models for Pedestrian Walking Behavior , 2006 .

[104]  Luc Mieussens,et al.  Macroscopic Fluid Models with Localized Kinetic Upscaling Effects , 2006, Multiscale Model. Simul..

[105]  John J Fruin,et al.  DESIGNING FOR PEDESTRIANS: A LEVEL-OF-SERVICE CONCEPT , 1971 .

[106]  M. Burger,et al.  Continuous limit of a crowd motion and herding model: Analysis and numerical simulations , 2011 .

[107]  George Yannis,et al.  A critical assessment of pedestrian behaviour models , 2009 .

[108]  Chi-Wang Shu,et al.  Dynamic continuum pedestrian flow model with memory effect. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  P. I. Richards Shock Waves on the Highway , 1956 .

[110]  Richard Bellman,et al.  Introduction to the mathematical theory of control processes , 1967 .

[111]  A. Birenbaum,et al.  People in places : the sociology of the familiar , 1973 .

[112]  Marvin J. Levine,et al.  You-Are-Here Maps , 1982 .

[113]  Marie-Therese Wolfram,et al.  On a mean field game approach modeling congestion and aversion in pedestrian crowds , 2011 .

[114]  Benedetto Piccoli,et al.  How can macroscopic models reveal self-organization in traffic flow? , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[115]  C. Canuto,et al.  A Eulerian approach to the analysis of rendez-vous algorithms , 2008 .

[116]  B. Piccoli,et al.  Generalized Wasserstein Distance and its Application to Transport Equations with Source , 2012, 1206.3219.

[117]  岡崎 甚幸,et al.  建築空間における歩行のためのシミュレーションモデルの研究 : その 5 探索歩行及び誘導標による歩行 , 1981 .

[118]  Michal Branicki,et al.  Information Theory for Climate Change and Prediction , 2015 .

[119]  Lubos Buzna,et al.  Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions , 2005, Transp. Sci..

[120]  Luca Bruno,et al.  Non-local first-order modelling of crowd dynamics: A multidimensional framework with applications , 2010, 1003.3891.

[121]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[122]  D. Helbing,et al.  The Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics , 2010, PloS one.

[123]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[124]  J L Adler,et al.  Emergent Fundamental Pedestrian Flows from Cellular Automata Microsimulation , 1998 .

[125]  Mohcine Chraibi,et al.  Force-based models of pedestrian dynamics , 2011, Networks Heterog. Media.

[126]  A. Berthoz,et al.  Relationship between velocity and curvature of a human locomotor trajectory , 2001, Neuroscience Letters.

[127]  Yacine Chitour,et al.  Optimal Control Models of Goal-oriented Human Locomotion , 2010, SIAM J. Control. Optim..

[128]  F. Santambrogio,et al.  A MACROSCOPIC CROWD MOTION MODEL OF GRADIENT FLOW TYPE , 2010, 1002.0686.

[129]  N. Bellomo,et al.  ON THE MODELLING CROWD DYNAMICS FROM SCALING TO HYPERBOLIC MACROSCOPIC MODELS , 2008 .

[130]  Andrew Adamatzky,et al.  Dynamics of crowd-minds - patterns of irrationality in emotions, beliefs and actions , 2005, World Scientific series on nonlinear science.

[131]  Manfred Gilli,et al.  Understanding complex systems , 1981, Autom..

[132]  S. Schaal,et al.  Origins and violations of the 2/3 power law in rhythmic three-dimensional arm movements , 2000, Experimental Brain Research.

[133]  D. Helbing Traffic and related self-driven many-particle systems , 2000, cond-mat/0012229.

[134]  S. Smale,et al.  On the mathematics of emergence , 2007 .

[135]  Atsuyuki Okabe,et al.  Wayfinding with a GPS-based mobile navigation system: A comparison with maps and direct experience , 2008 .

[136]  Reginald G. Golledge,et al.  HUMAN WAYFINDING AND COGNITIVE MAPS , 2003 .

[137]  Cécile Appert-Rolland,et al.  Traffic Instabilities in Self-Organized Pedestrian Crowds , 2012, PLoS Comput. Biol..

[138]  Benedetto Piccoli,et al.  Pedestrian flows in bounded domains with obstacles , 2008, 0812.4390.

[139]  LUISA FERMO,et al.  A Fully-Discrete-State Kinetic Theory Approach to Modeling Vehicular Traffic , 2013, SIAM J. Appl. Math..

[140]  R. Colombo,et al.  Pedestrian flows and non‐classical shocks , 2005 .

[141]  Dirk Helbing,et al.  Self-Organizing Pedestrian Movement , 2001 .

[142]  Shigeyuki Okazaki,et al.  建築空間における歩行のためのシミュレーションモデルの研究 : その 4 群集歩行の透視図による表現 , 1981 .

[143]  Marco Di Francesco,et al.  Measure solutions for non-local interaction PDEs with two species , 2013 .

[144]  Massimiliano Daniele Rosini,et al.  Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications: Classical and Non–Classical Advanced Mathematics for Real Life Applications , 2013 .

[145]  Luca Bruno,et al.  Crowd-structure interaction in lively footbridges under synchronous lateral excitation: A literature review. , 2009, Physics of life reviews.

[146]  Hong Yang,et al.  Calibration of an Infrared-Based Automatic Counting System for Pedestrian Traffic Flow Data Collection , 2010 .

[147]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[148]  Anna Nagurney,et al.  On a Paradox of Traffic Planning , 2005, Transp. Sci..

[149]  Serge P. Hoogendoorn,et al.  State-of-the-art crowd motion simulation models , 2013 .

[150]  Sabiha Amin Wadoo,et al.  Pedestrian Dynamics: Feedback Control of Crowd Evacuation , 2008 .

[151]  Dirk Helbing,et al.  How simple rules determine pedestrian behavior and crowd disasters , 2011, Proceedings of the National Academy of Sciences.

[152]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[153]  C. Daganzo Requiem for second-order fluid approximations of traffic flow , 1995 .

[154]  Pushkin Kachroo,et al.  A Microscopic-To-Macroscopic Crowd Dynamic Model , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[155]  Serge P. Hoogendoorn,et al.  Pedestrian route-choice and activity scheduling theory and models , 2004 .

[156]  Dirk Helbing,et al.  Recognition of crowd behavior from mobile sensors with pattern analysis and graph clustering methods , 2011, Networks Heterog. Media.

[157]  B. Maury,et al.  A mathematical framework for a crowd motion model , 2008 .

[158]  Benedetto Piccoli,et al.  Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints , 2009, 0906.4702.

[159]  Serge P. Hoogendoorn,et al.  DYNAMIC USER-OPTIMAL ASSIGNMENT IN CONTINUOUS TIME AND SPACE , 2004 .

[160]  R. Dalton The Secret Is To Follow Your Nose , 2001 .

[161]  R Plamondon,et al.  The 2/3 power law: when and why? , 1998, Acta psychologica.

[162]  Claudio Canuto,et al.  An Eulerian Approach to the Analysis of Krause's Consensus Models , 2012, SIAM J. Control. Optim..

[163]  R. J. Wheeler,et al.  PEDESTRIAN FLOW CHARACTERISTICS , 1969 .

[164]  Aimé Lachapelle,et al.  Quelques problèmes de transport et de contrôle en économie : aspects théoriques et numériques , 2010 .

[165]  Nicola Bellomo,et al.  On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms , 2011, Networks Heterog. Media.

[166]  M. Lee,et al.  The Perception of Minimal Structures: Performance on Open and Closed Versions of Visually Presented Euclidean Travelling Salesperson Problems , 2003, Perception.

[167]  Juan Soler,et al.  ON THE MATHEMATICAL THEORY OF THE DYNAMICS OF SWARMS VIEWED AS COMPLEX SYSTEMS , 2012 .

[168]  A. Seyfried,et al.  The fundamental diagram of pedestrian movement revisited , 2005, physics/0506170.

[169]  James M. Dabbs,et al.  Beauty is Power: The Use of Space on the Sidewalk , 2016 .

[170]  K. Aminian,et al.  Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty , 1999, Medical & Biological Engineering & Computing.

[171]  Paul Dourish,et al.  UbiComp 2006: Ubiquitous Computing, 8th International Conference, UbiComp 2006, Orange County, CA, USA, September 17-21, 2006 , 2006, UbiComp.

[172]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[173]  G. Parisi,et al.  Empirical investigation of starling flocks: a benchmark study in collective animal behaviour , 2008, Animal Behaviour.

[174]  C. Villani Topics in Optimal Transportation , 2003 .

[175]  Gerard Hanley,et al.  The Placement and Misplacement of You-Are-Here Maps , 1984 .

[176]  Jörg R. Weimar Coupling microscopic and macroscopic cellular automata , 2001, Parallel Comput..

[177]  C. Villani Optimal Transport: Old and New , 2008 .

[178]  M. Rosini,et al.  On entropy weak solutions of Hughes’ model for pedestrian motion , 2013 .