Magnetic linear response properties calculations with the Gaussian and augmented-plane-wave method.

We introduce a method for the all-electron calculation of the NMR chemical shifts and the EPR g tensor using the Gaussian and augmented-plane-wave method. The presented approach is based on the generalized density functional perturbation theory. The method is validated by comparison with other theoretical methods for a selection of small molecules. We also present two exemplary applications that involve the calculation of the chemical shifts of a hydrated adenine and the g tensor for the E(1)(') center in alpha-quartz using a quantum mechanical/molecular mechanical approach.

[1]  J. VandeVondele,et al.  Direct energy functional minimization under orthogonality constraints. , 2008, The Journal of chemical physics.

[2]  U. Rothlisberger,et al.  Nuclear magnetic resonance chemical shifts from hybrid DFT QM/MM calculations , 2004 .

[3]  Kramer,et al.  Force fields for silicas and aluminophosphates based on ab initio calculations. , 1990, Physical review letters.

[4]  Michele Parrinello,et al.  The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations , 1999 .

[5]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[6]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[7]  Todd A. Keith,et al.  Calculation of magnetic response properties using a continuous set of gauge transformations , 1993 .

[8]  N. Marzari,et al.  Exponential localization of Wannier functions in insulators. , 2006, Physical review letters.

[9]  M. Parrinello,et al.  Ab initio molecular dynamics-based assignment of the protonation state of pepstatin A/HIV-1 protease cleavage site. , 2001, Journal of the American Chemical Society.

[10]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[11]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[12]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[13]  Daniel Sebastiani,et al.  Generalized variational density functional perturbation theory , 2000 .

[14]  Larry E. Halliburton,et al.  Further characterization of the E 1 ′ center in crystalline Si O 2 , 1983 .

[15]  G. Wannier The Structure of Electronic Excitation Levels in Insulating Crystals , 1937 .

[16]  Gonze,et al.  Perturbation expansion of variational principles at arbitrary order. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[17]  Marcella Iannuzzi,et al.  Ground and excited state density functional calculations with the Gaussian and augmented-plane-wave method , 2005 .

[18]  X. Gonze,et al.  Adiabatic density-functional perturbation theory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[19]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[20]  Alessandro Laio,et al.  An Efficient Linear-Scaling Electrostatic Coupling for Treating Periodic Boundary Conditions in QM/MM Simulations. , 2006, Journal of chemical theory and computation.

[21]  Testa,et al.  Green's-function approach to linear response in solids. , 1987, Physical review letters.

[22]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[23]  R. Resta,et al.  Quantum-Mechanical Position Operator in Extended Systems , 1998 .

[24]  Michel Waroquier,et al.  First-principles calculations of hyperfine parameters with the Gaussian and augmented-plane-wave method : Application to radicals embedded in a crystalline environment , 2006 .

[25]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[26]  T. Keith,et al.  A comparison of models for calculating nuclear magnetic resonance shielding tensors , 1996 .

[27]  Jörg Kussmann,et al.  Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory. , 2007, The Journal of chemical physics.

[28]  Michele Parrinello,et al.  General and efficient algorithms for obtaining maximally localized Wannier functions , 2000 .

[29]  Jörg Kussmann,et al.  Ab initio NMR spectra for molecular systems with a thousand and more atoms: a linear-scaling method. , 2004, Angewandte Chemie.

[30]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[31]  Jun Li,et al.  Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..

[32]  Todd A. Keith,et al.  Calculation of magnetic response properties using atoms in molecules , 1992 .

[33]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[34]  M. Waroquier,et al.  First-principles calculation of the EPR g tensor in extended periodic systems , 2006 .

[35]  T. Laino,et al.  Migration of positively charged defects in (alpha)-quartz , 2007 .

[36]  First-principles theory of the EPR g tensor in solids: defects in quartz. , 2001, Physical review letters.

[37]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[38]  M. Parrinello,et al.  Response Function Basis Sets: Application to Density Functional Calculations , 1996 .

[39]  Alessandro Laio,et al.  A QUICKSTEP-based quantum mechanics/molecular mechanics approach for silica. , 2006, The Journal of chemical physics.

[40]  M. Bühl,et al.  Calculation of NMR and EPR parameters : theory and applications , 2004 .

[41]  Tom Ziegler,et al.  Calculation of the G-Tensor of Electron Paramagnetic Resonance Spectroscopy Using Gauge-Including Atomic Orbitals and Density Functional Theory , 1997 .

[42]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[43]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[44]  I. Tavernelli,et al.  NMR solvent shifts of adenine in aqueous solution from hybrid QM/MM molecular dynamics simulations. , 2007, The journal of physical chemistry. B.

[45]  Daniel Sebastiani,et al.  A New ab-Initio Approach for NMR Chemical Shifts in Periodic Systems , 2001 .

[46]  Matthias Krack,et al.  All-electron ab-initio molecular dynamics , 2000 .

[47]  Louie,et al.  Ab Initio Theory of NMR Chemical Shifts in Solids and Liquids. , 1996, Physical review letters.

[48]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[49]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[50]  Michele Parrinello,et al.  A hybrid Gaussian and plane wave density functional scheme , 1997 .

[51]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[52]  Francesco Mauri,et al.  All-electron magnetic response with pseudopotentials: NMR chemical shifts , 2001 .

[53]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[54]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .