Knowledge Graphs: An Information Retrieval Perspective

In this survey, we provide an overview of the literature on knowledge graphs (KGs) in the context of information retrieval (IR). Modern IR systems can benefit from information available in KGs in multiple ways, independent of whether the KGs are publicly available or proprietary ones. We provide an overview of the components required when building IR systems that leverage KGs and use a taskoriented organization of the material that we discuss. As an understanding of the intersection of IR and KGs is beneficial to many researchers and practitioners, we consider prior work from two complementary angles: leveraging KGs for information retrieval and enriching KGs using IR techniques. We start by discussing how KGs can be employed to support IR tasks, including document and entity retrieval. We then proceed by describing how IR—and language technology in general—can be utilized for the construction and completion of KGs. This includes tasks such as entity recognition, typing, and relation extraction. We discuss common issues that appear across the tasks that we consider and identify future directions for addressing them. We also provide pointers to Ridho Reinanda, Edgar Meij and Maarten de Rijke (2020), “Knowledge Graphs: An Information Retrieval Perspective”, : Vol. xx, No. xx, pp 1–153. DOI: 10.1561/XXXXXXXXX.

[1]  Björn Buchhold,et al.  Semantic Search on Text and Knowledge Bases , 2016, Found. Trends Inf. Retr..

[2]  Andrew McCallum,et al.  Lexicon Infused Phrase Embeddings for Named Entity Resolution , 2014, CoNLL.

[3]  Julien Leblay,et al.  Deriving Validity Time in Knowledge Graph , 2018, WWW.

[4]  Alexandra Meliou,et al.  Data X-Ray: A Diagnostic Tool for Data Errors , 2015, SIGMOD Conference.

[5]  Gianluca Demartini,et al.  Combining inverted indices and structured search for ad-hoc object retrieval , 2012, SIGIR '12.

[6]  Luke S. Zettlemoyer,et al.  Knowledge-Based Weak Supervision for Information Extraction of Overlapping Relations , 2011, ACL.

[7]  Zaiqing Nie,et al.  Joint Entity Recognition and Disambiguation , 2015, EMNLP.

[8]  Richard M. Schwartz,et al.  An Algorithm that Learns What's in a Name , 1999, Machine Learning.

[9]  Guillaume Lample,et al.  Neural Architectures for Named Entity Recognition , 2016, NAACL.

[10]  Johannes Hoffart,et al.  Discovering Entities with Just a Little Help from You , 2016, CIKM.

[11]  L. Getoor,et al.  Sparsity and Noise: Where Knowledge Graph Embeddings Fall Short , 2017, EMNLP.

[12]  James Allan,et al.  Entity query feature expansion using knowledge base links , 2014, SIGIR.

[13]  Ji Zhang,et al.  A Knowledge Base Approach to Cross-Lingual Keyword Query Interpretation , 2016, International Semantic Web Conference.

[14]  Krisztian Balog,et al.  Multi-step classification approaches to cumulative citation recommendation , 2013, OAIR.

[15]  M. de Rijke,et al.  Adding semantics to microblog posts , 2012, WSDM '12.

[16]  Kuansan Wang,et al.  Entity linking at the tail: sparse signals, unknown entities, and phrase models , 2014, WSDM.

[17]  Oren Etzioni,et al.  Open Information Extraction from the Web , 2007, CACM.

[18]  Marie-Jean Meurs,et al.  Mutual Disambiguation for Entity Linking , 2014, ACL.

[19]  Li Li,et al.  A Survey on Relation Extraction , 2017, CCKS.

[20]  Ashish Anand,et al.  Fine-Grained Entity Type Classification by Jointly Learning Representations and Label Embeddings , 2017, EACL.

[21]  Wen-Hsiang Lu,et al.  Identifying Real-Life Complex Task Names with Task-Intrinsic Entities from Microblogs , 2014, ACL.

[22]  Nicolas Le Roux,et al.  A latent factor model for highly multi-relational data , 2012, NIPS.

[23]  Francesco Bonchi,et al.  From machu_picchu to "rafting the urubamba river": anticipating information needs via the entity-query graph , 2013, WSDM '13.

[24]  Krisztian Balog,et al.  Entity-Oriented Search , 2018, The Information Retrieval Series.

[25]  Mark A. Przybocki,et al.  The Automatic Content Extraction (ACE) Program – Tasks, Data, and Evaluation , 2004, LREC.

[26]  Gerhard Weikum,et al.  Robust Disambiguation of Named Entities in Text , 2011, EMNLP.

[27]  M. de Rijke,et al.  Formal models for expert finding in enterprise corpora , 2006, SIGIR.

[28]  Ganesh Ramakrishnan,et al.  Collective annotation of Wikipedia entities in web text , 2009, KDD.

[29]  Partha Talukdar,et al.  HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding , 2018, EMNLP.

[30]  Milad Shokouhi,et al.  From Queries to Cards: Re-ranking Proactive Card Recommendations Based on Reactive Search History , 2015, SIGIR.

[31]  Feng Niu,et al.  Building an Entity-Centric Stream Filtering Test Collection for TREC 2012 , 2012, TREC.

[32]  Valentin I. Spitkovsky,et al.  Stanford's Distantly-Supervised Slot-Filling System , 2011, TAC.

[33]  Maarten de Rijke,et al.  Structural Regularities in Text-based Entity Vector Spaces , 2017, ICTIR.

[34]  Juan-Zi Li,et al.  Cross-lingual knowledge linking across wiki knowledge bases , 2012, WWW.

[35]  Maarten de Rijke,et al.  Dynamic Query Modeling for Related Content Finding , 2015, SIGIR.

[36]  Nicholas Jing Yuan,et al.  Collaborative Knowledge Base Embedding for Recommender Systems , 2016, KDD.

[37]  Jun Zhao,et al.  Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks , 2015, EMNLP.

[38]  Andrew McCallum,et al.  Collective Cross-Document Relation Extraction Without Labelled Data , 2010, EMNLP.

[39]  W. Bruce Croft,et al.  A Probabilistic Retrieval Model for Semistructured Data , 2009, ECIR.

[40]  Ludovic Bonnefoy,et al.  A weakly-supervised detection of entity central documents in a stream , 2013, SIGIR.

[41]  Edgar Meij,et al.  Utilizing Knowledge Graphs for Text-Centric Information Retrieval , 2018, SIGIR.

[42]  Eugene Agichtein,et al.  Improving entity search over linked data by modeling latent semantics , 2013, CIKM.

[43]  Hui Fang,et al.  A Related Entity based Approach for Knowledge Base Acceleration , 2013, TREC.

[44]  M. de Rijke,et al.  Learning to Explain Entity Relationships in Knowledge Graphs , 2015, ACL.

[45]  W. Bruce Croft,et al.  Search Engines - Information Retrieval in Practice , 2009 .

[46]  Maarten de Rijke,et al.  Dynamic Collective Entity Representations for Entity Ranking , 2016, WSDM '16.

[47]  Hao Ma,et al.  An Introduction to Entity Recommendation and Understanding , 2015, WWW.

[48]  Luo Si,et al.  An Entity Class-Dependent Discriminative Mixture Model for Cumulative Citation Recommendation , 2015, SIGIR.

[49]  Ting Wang,et al.  Automatically Assessing Wikipedia Article Quality by Exploiting Article-Editor Networks , 2015, ECIR.

[50]  Jun Zhao,et al.  Knowledge Graph Embedding via Dynamic Mapping Matrix , 2015, ACL.

[51]  Michael Gamon,et al.  Representing Text for Joint Embedding of Text and Knowledge Bases , 2015, EMNLP.

[52]  M. de Rijke,et al.  Mapping queries to the Linking Open Data cloud: A case study using DBpedia , 2011, J. Web Semant..

[53]  Andrew McCallum,et al.  Fast and Accurate Entity Recognition with Iterated Dilated Convolutions , 2017, EMNLP.

[54]  Jeff Z. Pan,et al.  Transfer Learning Based Cross-lingual Knowledge Extraction for Wikipedia , 2013, ACL.

[55]  Aditya Kumar Mishra,et al.  Hierarchical Semi-supervised Classification with Incomplete Class Hierarchies , 2016, WSDM.

[56]  M. de Rijke,et al.  Learning Latent Vector Spaces for Product Search , 2016, CIKM.

[57]  Ming-Wei Chang,et al.  Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base , 2015, ACL.

[58]  Roi Blanco,et al.  Entity Recommendations in Web Search , 2013, SEMWEB.

[59]  Fernando Pereira,et al.  Wikilinks: A Large-scale Cross-Document Coreference Corpus Labeled via Links to Wikipedia , 2012 .

[60]  Chih-Hung Hsieh,et al.  Towards better measurement of attention and satisfaction in mobile search , 2014, SIGIR.

[61]  M. de Rijke,et al.  Document Filtering for Long-tail Entities , 2016, CIKM.

[62]  Krisztian Balog,et al.  Entity Linking in Queries: Tasks and Evaluation , 2015, ICTIR.

[63]  Yixin Cao,et al.  Explainable Reasoning over Knowledge Graphs for Recommendation , 2018, AAAI.

[64]  Xin Luna Dong,et al.  Efficient Knowledge Graph Accuracy Evaluation , 2019, Proc. VLDB Endow..

[65]  Doug Downey,et al.  Local and Global Algorithms for Disambiguation to Wikipedia , 2011, ACL.

[66]  Benno Stein,et al.  Vandalism Detection in Wikidata , 2016, CIKM.

[67]  Oren Etzioni,et al.  No Noun Phrase Left Behind: Detecting and Typing Unlinkable Entities , 2012, EMNLP.

[68]  Marcel Worring,et al.  Unsupervised, Efficient and Semantic Expertise Retrieval , 2016, WWW.

[69]  Gerhard Weikum,et al.  Fine-grained Semantic Typing of Emerging Entities , 2013, ACL.

[70]  M. de Rijke,et al.  Generating Descriptions of Entity Relationships , 2017, ECIR.

[71]  Alexander Panchenko,et al.  Improving Neural Entity Disambiguation with Graph Embeddings , 2019, ACL.

[72]  Rahul Gupta,et al.  Knowledge base completion via search-based question answering , 2014, WWW.

[73]  Christopher Ré,et al.  Building a Large-scale Multimodal Knowledge Base for Visual Question Answering , 2015, ArXiv.

[74]  W. Bruce Croft,et al.  Hierarchical Language Models for Expert Finding in Enterprise Corpora , 2006, 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06).

[75]  Ralph Grishman,et al.  A Maximum Entropy Approach to Named Entity Recognition , 1999 .

[76]  Rada Mihalcea,et al.  Wikify!: linking documents to encyclopedic knowledge , 2007, CIKM '07.

[77]  James Allan,et al.  Introduction to topic detection and tracking , 2002 .

[78]  Tie-Yan Liu,et al.  Word-Entity Duet Representations for Document Ranking , 2017, SIGIR.

[79]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[80]  Jens Lehmann,et al.  DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia , 2015, Semantic Web.

[81]  Silviu Cucerzan,et al.  Large-Scale Named Entity Disambiguation Based on Wikipedia Data , 2007, EMNLP.

[82]  Peter Mika,et al.  Ad-hoc object retrieval in the web of data , 2010, WWW '10.

[83]  Hans-Peter Kriegel,et al.  Factorizing YAGO: scalable machine learning for linked data , 2012, WWW.

[84]  Prakhar Ojha,et al.  KGEval: Estimating Accuracy of Automatically Constructed Knowledge Graphs , 2016, 1610.06912.

[85]  Alexander Kotov,et al.  Fielded Sequential Dependence Model for Ad-Hoc Entity Retrieval in the Web of Data , 2015, SIGIR.

[86]  Razvan C. Bunescu,et al.  Using Encyclopedic Knowledge for Named entity Disambiguation , 2006, EACL.

[87]  Yuji Matsumoto,et al.  Japanese Named Entity Extraction with Redundant Morphological Analysis , 2003, NAACL.

[88]  Nicoleta Preda,et al.  Mining rules to align knowledge bases , 2013, AKBC '13.

[89]  M. de Rijke,et al.  Ask the Crowd to Find out What's Important , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).

[90]  Paola Velardi,et al.  Unsupervised Named Entity Recognition Using Syntactic and Semantic Contextual Evidence , 2001, CL.

[91]  Satoshi Sekine,et al.  Description of the Japanese NE System Used for MET-2 , 1998, MUC.

[92]  James P. Callan,et al.  Explicit Semantic Ranking for Academic Search via Knowledge Graph Embedding , 2017, WWW.

[93]  Simone Paolo Ponzetto,et al.  Ranking Entities for Web Queries Through Text and Knowledge , 2015, CIKM.

[94]  Mandar Joshi,et al.  Knowledge Graph and Corpus Driven Segmentation and Answer Inference for Telegraphic Entity-seeking Queries , 2014, EMNLP.

[95]  Houfeng Wang,et al.  Learning Entity Representation for Named Entity Disambiguation. , 2015 .

[96]  Raphaël Troncy,et al.  GERBIL: General Entity Annotator Benchmarking Framework , 2015, WWW.

[97]  Jiawei Han,et al.  Entity Set Search of Scientific Literature: An Unsupervised Ranking Approach , 2018, SIGIR.

[98]  Wei Chu,et al.  Learning to Recommend Related Entities to Search Users , 2015, WSDM.

[99]  Kentaro Inui,et al.  Neural Architectures for Fine-grained Entity Type Classification , 2016, EACL.

[100]  Pradeep Bansal,et al.  Knowledge Base Inference using Bridging Entities , 2015, EMNLP.

[101]  Nanda Kambhatla,et al.  Combining Lexical, Syntactic, and Semantic Features with Maximum Entropy Models for Information Extraction , 2004, ACL.

[102]  Paul Thomas,et al.  Overview of the TREC 2009 Entity Track , 2009, TREC.

[103]  Nick Craswell,et al.  Overview of the TREC 2005 Enterprise Track , 2005, TREC.

[104]  Tiejun Zhao,et al.  Knowledge-Based Question Answering as Machine Translation , 2014, ACL.

[105]  Jian Su,et al.  Exploring Various Knowledge in Relation Extraction , 2005, ACL.

[106]  Hans-Peter Kriegel,et al.  A Three-Way Model for Collective Learning on Multi-Relational Data , 2011, ICML.

[107]  Jeffrey P. Bigham,et al.  Organizing and Searching the World Wide Web of Facts - Step One: The One-Million Fact Extraction Challenge , 2006, AAAI.

[108]  Wei Shen,et al.  An Attention Factor Graph Model for Tweet Entity Linking , 2018, WWW.

[109]  Bo Zhao,et al.  Leveraging Knowledge Bases for Contextual Entity Exploration , 2015, KDD.

[110]  Olga Vechtomova,et al.  Exploring knowledge graphs for exploratory search , 2014, IIiX.

[111]  James Allan,et al.  Passage retrieval for incorporating global evidence in sequence labeling , 2011, CIKM '11.

[112]  W. Bruce Croft,et al.  A Markov random field model for term dependencies , 2005, SIGIR '05.

[113]  Kevin Chen-Chuan Chang,et al.  Entity-centric document filtering: boosting feature mapping through meta-features , 2013, CIKM.

[114]  Thomas Hofmann,et al.  End-to-End Neural Entity Linking , 2018, CoNLL.

[115]  Chantal van Son,et al.  MEANTIME, the NewsReader Multilingual Event and Time Corpus , 2016, LREC.

[116]  Jing Zhang,et al.  Cross-Lingual Infobox Alignment in Wikipedia Using Entity-Attribute Factor Graph , 2017, SEMWEB.

[117]  M. de Rijke,et al.  Generating Pseudo-ground Truth for Predicting New Concepts in Social Streams , 2014, ECIR.

[118]  Alexander J. Smola,et al.  Measurement and modeling of eye-mouse behavior in the presence of nonlinear page layouts , 2013, WWW.

[119]  Erik F. Tjong Kim Sang,et al.  Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition , 2003, CoNLL.

[120]  Chun How Tan,et al.  Trust, but verify: predicting contribution quality for knowledge base construction and curation , 2014, WSDM.

[121]  Valentin Jijkoun,et al.  "More like these": growing entity classes from seeds , 2007, CIKM '07.

[122]  Ihab F. Ilyas,et al.  Interpreting keyword queries over web knowledge bases , 2012, CIKM '12.

[123]  Mathias Niepert,et al.  Learning Sequence Encoders for Temporal Knowledge Graph Completion , 2018, EMNLP.

[124]  Yang Li,et al.  Knowledge Verification for LongTail Verticals , 2017, Proc. VLDB Endow..

[125]  Brendan T. O'Connor,et al.  Improving Entity Ranking for Keyword Queries , 2016, CIKM.

[126]  Zhiyuan Liu,et al.  Entity-Duet Neural Ranking: Understanding the Role of Knowledge Graph Semantics in Neural Information Retrieval , 2018, ACL.

[127]  Gerard de Melo,et al.  "Seeing is believing: the quest for multimodal knowledge" by Gerard de Melo and Niket Tandon, with Martin Vesely as coordinator , 2016, LINK.

[128]  Hinrich Schütze,et al.  Corpus-level Fine-grained Entity Typing Using Contextual Information , 2015, EMNLP.

[129]  Arjen P. de Vries,et al.  Graph-Embedding Empowered Entity Retrieval , 2020, ECIR.

[130]  Xuchen Yao,et al.  Information Extraction over Structured Data: Question Answering with Freebase , 2014, ACL.

[131]  William W. Cohen,et al.  Semi-Markov Conditional Random Fields for Information Extraction , 2004, NIPS.

[132]  Zhen Wang,et al.  Knowledge Graph Embedding by Translating on Hyperplanes , 2014, AAAI.

[133]  Xitong Liu,et al.  Latent entity space: a novel retrieval approach for entity-bearing queries , 2015, Information Retrieval Journal.

[134]  Heng Ji,et al.  AFET: Automatic Fine-Grained Entity Typing by Hierarchical Partial-Label Embedding , 2016, EMNLP.

[135]  Benno Stein,et al.  Automatic Vandalism Detection in Wikipedia , 2008, ECIR.

[136]  M. de Rijke,et al.  The birth of collective memories: Analyzing emerging entities in text streams , 2017, J. Assoc. Inf. Sci. Technol..

[137]  Hannah Bast,et al.  Relevance Scores for Triples from Type-Like Relations , 2015, SIGIR.

[138]  Danqi Chen,et al.  Reasoning With Neural Tensor Networks for Knowledge Base Completion , 2013, NIPS.

[139]  Giuseppe Ottaviano,et al.  Fast and Space-Efficient Entity Linking for Queries , 2015, WSDM.

[140]  Lidong Bing,et al.  Wikipedia entity expansion and attribute extraction from the web using semi-supervised learning , 2013, WSDM.

[141]  Roberto Navigli,et al.  Validating and Extending Semantic Knowledge Bases using Video Games with a Purpose , 2014, ACL.

[142]  Andrew McCallum,et al.  Relation Extraction with Matrix Factorization and Universal Schemas , 2013, NAACL.

[143]  Bert F. Green,et al.  Baseball: an automatic question-answerer , 1899, IRE-AIEE-ACM '61 (Western).

[144]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[145]  Wei Zhang,et al.  Knowledge-Based Trust: Estimating the Trustworthiness of Web Sources , 2015, Proc. VLDB Endow..

[146]  Stefano Ceri,et al.  Iterative Knowledge Extraction from Social Networks , 2018, WWW.

[147]  Satoshi Sekine,et al.  Definition, Dictionaries and Tagger for Extended Named Entity Hierarchy , 2004, LREC.

[148]  Ian H. Witten,et al.  Learning to link with wikipedia , 2008, CIKM '08.

[149]  Stephanie M. Strassel,et al.  Overview of Linguistic Resource for the TAC KBP 2014 Evaluations: Planning, Execution, and Results , 2014 .

[150]  Andrew Y. Ng,et al.  Semantic Compositionality through Recursive Matrix-Vector Spaces , 2012, EMNLP.

[151]  Takahiro Hara,et al.  Probabilistic semantic similarity measurements for noisy short texts using Wikipedia entities , 2013, CIKM.

[152]  Mounia Lalmas,et al.  Penguins in sweaters, or serendipitous entity search on user-generated content , 2013, CIKM.

[153]  Clare R. Voss,et al.  ClusType: Effective Entity Recognition and Typing by Relation Phrase-Based Clustering , 2015, KDD.

[154]  Dmitry Zelenko,et al.  Kernel Methods for Relation Extraction , 2002, J. Mach. Learn. Res..

[155]  Cong Yu,et al.  REX: Explaining Relationships between Entity Pairs , 2011, Proc. VLDB Endow..

[156]  Fernando Pereira,et al.  Collective Entity Resolution with Multi-Focal Attention , 2016, ACL.

[157]  Lejian Liao,et al.  BIT and MSRA at TREC KBA CCR Track 2013 , 2013, TREC.

[158]  Gerhard Weikum,et al.  The Knowledge Awakens: Keeping Knowledge Bases Fresh with Emerging Entities , 2016, WWW.

[159]  Jason Weston,et al.  A semantic matching energy function for learning with multi-relational data , 2013, Machine Learning.

[160]  Jason Weston,et al.  Learning Structured Embeddings of Knowledge Bases , 2011, AAAI.

[161]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[162]  Krisztian Balog,et al.  Exploiting Entity Linking in Queries for Entity Retrieval , 2016, ICTIR.

[163]  M. de Rijke,et al.  Expertise Retrieval , 2012, Found. Trends Inf. Retr..

[164]  Jimeng Sun,et al.  Incorporating Social Context and Domain Knowledge for Entity Recognition , 2015, WWW.

[165]  Evgeniy Gabrilovich,et al.  Constructing and Mining Web-scale Knowledge Graphs , 2016, SIGIR.

[166]  Thomas Hofmann,et al.  Probabilistic Bag-Of-Hyperlinks Model for Entity Linking , 2015, WWW.

[167]  Carlo Zaniolo,et al.  Multilingual Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment , 2016, IJCAI.

[168]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[169]  Oren Kurland,et al.  Document Retrieval Using Entity-Based Language Models , 2016, SIGIR.

[170]  Nevena Lazic,et al.  Context-Dependent Fine-Grained Entity Type Tagging , 2014, ArXiv.

[171]  Chao Zhang,et al.  Graph-based knowledge reuse for supporting knowledge-driven decision-making in new product development , 2017, Int. J. Prod. Res..

[172]  Avishek Anand,et al.  Automated News Suggestions for Populating Wikipedia Entity Pages , 2015, CIKM.

[173]  Andrew Chou,et al.  Semantic Parsing on Freebase from Question-Answer Pairs , 2013, EMNLP.

[174]  Joemon M. Jose,et al.  Playing Your Cards Right: The Effect of Entity Cards on Search Behaviour and Workload , 2016, CHIIR.

[175]  Robert J. Gaizauskas,et al.  Graph Ranking for Collective Named Entity Disambiguation , 2014, ACL.

[176]  Ian H. Witten,et al.  Topic indexing with Wikipedia , 2008 .

[177]  Pablo N. Mendes,et al.  Improving efficiency and accuracy in multilingual entity extraction , 2013, I-SEMANTICS '13.

[178]  Gerhard Weikum,et al.  Discovering emerging entities with ambiguous names , 2014, WWW.

[179]  James P. Callan,et al.  Query Expansion with Freebase , 2015, ICTIR.

[180]  Kentaro Inui,et al.  An Attentive Neural Architecture for Fine-grained Entity Type Classification , 2016, AKBC@NAACL-HLT.

[181]  Jianfeng Gao,et al.  Modeling Interestingness with Deep Neural Networks , 2014, EMNLP.

[182]  Yelong Shen,et al.  Deep Context Modeling for Web Query Entity Disambiguation , 2017, CIKM.

[183]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[184]  M. de Rijke,et al.  A Neural Click Model for Web Search , 2016, WWW.

[185]  Oren Etzioni,et al.  Open Information Extraction: The Second Generation , 2011, IJCAI.

[186]  Emanuele Della Valle,et al.  Extracting Emerging Knowledge from Social Media , 2017, WWW.

[187]  Nevena Lazic,et al.  Plato: A Selective Context Model for Entity Resolution , 2015, TACL.

[188]  Tom M. Mitchell,et al.  Efficient and Expressive Knowledge Base Completion Using Subgraph Feature Extraction , 2015, EMNLP.

[189]  Andrew McCallum,et al.  Modeling Relations and Their Mentions without Labeled Text , 2010, ECML/PKDD.

[190]  Gerhard Weikum,et al.  HYENA: Hierarchical Type Classification for Entity Names , 2012, COLING.

[191]  Evgeniy Gabrilovich,et al.  A Review of Relational Machine Learning for Knowledge Graphs , 2015, Proceedings of the IEEE.

[192]  Alexander Kotov,et al.  Parameterized Fielded Term Dependence Models for Ad-hoc Entity Retrieval from Knowledge Graph , 2016, SIGIR.

[193]  Benno Stein,et al.  Towards Vandalism Detection in Knowledge Bases: Corpus Construction and Analysis , 2015, SIGIR.

[194]  Patrick Pantel,et al.  Jigs and Lures: Associating Web Queries with Structured Entities , 2011, ACL.

[195]  Gökhan Tür,et al.  Personal knowledge graph population from user utterances in conversational understanding , 2014, 2014 IEEE Spoken Language Technology Workshop (SLT).

[196]  Geoffrey Zweig,et al.  Probabilistic enrichment of knowledge graph entities for relation detection in conversational understanding , 2014, INTERSPEECH.

[197]  Maarten de Rijke,et al.  Semantic Entity Retrieval Toolkit , 2017, ArXiv.

[198]  Avirup Sil,et al.  Re-ranking for joint named-entity recognition and linking , 2013, CIKM.

[199]  Wei Li,et al.  Early results for Named Entity Recognition with Conditional Random Fields, Feature Induction and Web-Enhanced Lexicons , 2003, CoNLL.

[200]  M. de Rijke,et al.  Ranking related entities: components and analyses , 2010, CIKM.

[201]  M. de Rijke,et al.  Query modeling for entity search based on terms, categories, and examples , 2011, TOIS.

[202]  Satoshi Sekine,et al.  Named entities : recognition, classification and use , 2009 .

[203]  M. de Rijke,et al.  Ad Hoc Monitoring of Vocabulary Shifts over Time , 2015, CIKM.

[204]  Jianfeng Gao,et al.  Embedding Entities and Relations for Learning and Inference in Knowledge Bases , 2014, ICLR.

[205]  Hong Sun,et al.  A Hybrid Neural Model for Type Classification of Entity Mentions , 2015, IJCAI.

[206]  Zhen Wang,et al.  Aligning Knowledge and Text Embeddings by Entity Descriptions , 2015, EMNLP.

[207]  Gianluca Demartini,et al.  Effective named entity recognition for idiosyncratic web collections , 2014, WWW.

[208]  Ralph Grishman,et al.  Extracting Relations with Integrated Information Using Kernel Methods , 2005, ACL.

[209]  Enrique Alfonseca,et al.  Pattern Learning for Relation Extraction with a Hierarchical Topic Model , 2012, ACL.

[210]  Craig Willis,et al.  Learning sufficient queries for entity filtering , 2014, SIGIR.

[211]  Yiqun Liu,et al.  Jointly Learning Explainable Rules for Recommendation with Knowledge Graph , 2019, WWW.

[212]  Preslav Nakov,et al.  SemEval-2007 Task 04: Classification of Semantic Relations between Nominals , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[213]  Ellen Riloff,et al.  Learning Dictionaries for Information Extraction by Multi-Level Bootstrapping , 1999, AAAI/IAAI.

[214]  Christopher D. Manning,et al.  Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling , 2005, ACL.

[215]  Yi Chang,et al.  Ranking related entities for web search queries , 2011, WWW.

[216]  Carlos Angel Iglesias,et al.  Exploiting semantic similarity for named entity disambiguation in knowledge graphs , 2018, Expert Syst. Appl..

[217]  Massimiliano Ciaramita,et al.  A framework for benchmarking entity-annotation systems , 2013, WWW.

[218]  Luis Gravano,et al.  Snowball: extracting relations from large plain-text collections , 2000, DL '00.

[219]  W. Bruce Croft,et al.  Latent concept expansion using markov random fields , 2007, SIGIR.

[220]  Hinrich Schütze,et al.  A Piggyback System for Joint Entity Mention Detection and Linking in Web Queries , 2016, WWW.

[221]  Gerhard Weikum,et al.  A Fresh Look on Knowledge Bases: Distilling Named Events from News , 2014, CIKM.

[222]  Yang Song,et al.  Exploring Multiple Feature Spaces for Novel Entity Discovery , 2016, AAAI.

[223]  Manjunath Hegde,et al.  An Entity-centric Approach for Overcoming Knowledge Graph Sparsity , 2015, EMNLP.

[224]  J. Altham Naming and necessity. , 1981 .

[225]  Nevena Lazic,et al.  Embedding Methods for Fine Grained Entity Type Classification , 2015, ACL.

[226]  Gerhard Weikum,et al.  FINET: Context-Aware Fine-Grained Named Entity Typing , 2015, EMNLP.

[227]  Adam Jatowt,et al.  Overview of NTCIR-13 Actionable Knowledge Graph ( AKG ) Task , 2017 .

[228]  William W. Cohen,et al.  Language-Independent Set Expansion of Named Entities Using the Web , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[229]  Cristina V. Lopes,et al.  Bagging gradient-boosted trees for high precision, low variance ranking models , 2011, SIGIR.

[230]  Krisztian Balog,et al.  Entity linking and retrieval , 2013, SIGIR.

[231]  Ralph Grishman,et al.  Message Understanding Conference- 6: A Brief History , 1996, COLING.

[232]  Ebrahim Bagheri,et al.  Document Retrieval Model Through Semantic Linking , 2017, WSDM.

[233]  Chin-Yew Lin,et al.  MSR KMG at TREC 2014 KBA Track Vital Filtering Task , 2014 .

[234]  Evgeniy Gabrilovich,et al.  Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis , 2007, IJCAI.

[235]  M. de Rijke,et al.  Ranking for Relevance and Display Preferences in Complex Presentation Layouts , 2018, SIGIR.

[236]  Shaoping Ma,et al.  Constructing an Interaction Behavior Model for Web Image Search , 2018, SIGIR.

[237]  Christoph Lange,et al.  Towards a Knowledge Graph Representing Research Findings by Semantifying Survey Articles , 2017, TPDL.

[238]  Yoram Singer,et al.  Unsupervised Models for Named Entity Classification , 1999, EMNLP.

[239]  Krisztian Balog,et al.  Entity linking and retrieval for semantic search , 2014, WSDM.

[240]  Jason Weston,et al.  Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.

[241]  Heng Ji,et al.  Label Noise Reduction in Entity Typing by Heterogeneous Partial-Label Embedding , 2016, KDD.

[242]  Zhiyuan Liu,et al.  Learning Entity and Relation Embeddings for Knowledge Graph Completion , 2015, AAAI.

[243]  Oren Etzioni,et al.  Identifying Relations for Open Information Extraction , 2011, EMNLP.

[244]  Maarten de Rijke,et al.  Mining, Ranking and Recommending Entity Aspects , 2015, SIGIR.

[245]  Denilson Barbosa,et al.  Neural Fine-Grained Entity Type Classification with Hierarchy-Aware Loss , 2018, NAACL.

[246]  Jiawei Han,et al.  On building entity recommender systems using user click log and freebase knowledge , 2014, WSDM.

[247]  Gerhard Weikum,et al.  C3EL: A Joint Model for Cross-Document Co-Reference Resolution and Entity Linking , 2015, EMNLP.

[248]  Jure Leskovec,et al.  Graph Convolutional Neural Networks for Web-Scale Recommender Systems , 2018, KDD.

[249]  Hongyu Guo,et al.  A Neural Bag-of-Words Modelling Framework for Link Prediction in Knowledge Bases with Sparse Connectivity , 2019, WWW.

[250]  Ramesh Nallapati,et al.  Multi-instance Multi-label Learning for Relation Extraction , 2012, EMNLP.

[251]  Bhaskar Mitra,et al.  An Introduction to Neural Information Retrieval , 2018, Found. Trends Inf. Retr..

[252]  Carlos Guestrin,et al.  Distributed Non-Parametric Representations for Vital Filtering: UW at TREC KBA 2014 , 2014, TREC.

[253]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[254]  Wei Zhang,et al.  Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.

[255]  Mounia Lalmas,et al.  Overview of the INEX 2007 Entity Ranking Track , 2008, INEX.

[256]  Maarten de Rijke,et al.  Feeding the Second Screen: Semantic Linking based on Subtitles , 2013, DIR.

[257]  Ni Lao,et al.  Relational retrieval using a combination of path-constrained random walks , 2010, Machine Learning.

[258]  Ting Liu,et al.  Microblog Entity Linking by Leveraging Extra Posts , 2013, EMNLP.

[259]  Mark Sanderson,et al.  Test Collection Based Evaluation of Information Retrieval Systems , 2010, Found. Trends Inf. Retr..

[260]  Gerhard Weikum,et al.  Relationship Queries on Extended Knowledge Graphs , 2016, WSDM.

[261]  Laura Dietz,et al.  Constructing query-specific knowledge bases , 2013, AKBC '13.

[262]  Daniel S. Weld,et al.  Fine-Grained Entity Recognition , 2012, AAAI.

[263]  Wei Zhang,et al.  Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning , 2019, WWW.

[264]  Soumen Chakrabarti,et al.  Joint Bootstrapping of Corpus Annotations and Entity Types , 2013, EMNLP.

[265]  Roi Blanco,et al.  From "Selena Gomez" to "Marlon Brando": Understanding Explorative Entity Search , 2015, WWW.

[266]  M. de Rijke,et al.  Click Models for Web Search , 2015, Click Models for Web Search.

[267]  M. de Rijke,et al.  Learning Semantic Query Suggestions , 2009, SEMWEB.

[268]  Salvatore Orlando,et al.  Learning relatedness measures for entity linking , 2013, CIKM.

[269]  Joel Nothman,et al.  Cheap and easy entity evaluation , 2014, ACL.

[270]  Krisztian Balog,et al.  A test collection for entity search in DBpedia , 2013, SIGIR.

[271]  Yizhou Sun,et al.  Personalized entity recommendation: a heterogeneous information network approach , 2014, WSDM.

[272]  Laura Dietz,et al.  UMass at TREC 2013 Knowledge Base Acceleration Track: Bi-directional Entity Linking and Time-aware Evaluation , 2013, TREC.

[273]  Daniel Jurafsky,et al.  Distant supervision for relation extraction without labeled data , 2009, ACL.

[274]  Dirk Hovy How Well can We Learn Interpretable Entity Types from Text? , 2014, ACL.

[275]  Paolo Rosso,et al.  A Knowledge-based Representation for Cross-Language Document Retrieval and Categorization , 2014, EACL.

[276]  Tom M. Mitchell,et al.  Improving Learning and Inference in a Large Knowledge-Base using Latent Syntactic Cues , 2013, EMNLP.

[277]  M. de Rijke,et al.  A language modeling framework for expert finding , 2009, Inf. Process. Manag..

[278]  Ming-Wei Chang,et al.  Open Domain Question Answering via Semantic Enrichment , 2015, WWW.

[279]  Joshua B. Tenenbaum,et al.  Modelling Relational Data using Bayesian Clustered Tensor Factorization , 2009, NIPS.

[280]  Sergey Brin,et al.  Extracting Patterns and Relations from the World Wide Web , 1998, WebDB.

[281]  Aron Culotta,et al.  Dependency Tree Kernels for Relation Extraction , 2004, ACL.

[282]  Yang Li,et al.  Leveraging Pattern Semantics for Extracting Entities in Enterprises , 2015, WWW.

[283]  James P. Callan,et al.  EsdRank: Connecting Query and Documents through External Semi-Structured Data , 2015, CIKM.

[284]  Christos Faloutsos,et al.  Center-piece subgraphs: problem definition and fast solutions , 2006, KDD '06.

[285]  Li Guo,et al.  Context-Dependent Knowledge Graph Embedding , 2015, EMNLP.

[286]  Achim Rettinger,et al.  XKnowSearch!: Exploiting Knowledge Bases for Entity-based Cross-lingual Information Retrieval , 2016, CIKM.

[287]  Danqi Chen,et al.  Observed versus latent features for knowledge base and text inference , 2015, CVSC.

[288]  Yan Zhang,et al.  Tailor knowledge graph for query understanding: linking intent topics by propagation , 2014, EMNLP.

[289]  Qiao Liu,et al.  Hierarchical Random Walk Inference in Knowledge Graphs , 2016, SIGIR.

[290]  Razvan C. Bunescu,et al.  A Shortest Path Dependency Kernel for Relation Extraction , 2005, HLT.