A comparison of metaheuristics in structural optimization

In the recent decades metaheuristic search techniques have been widely employed for developing structural design optimization algorithms. Amongst these techniques are genetic algorithms, simulated annealing, evolution strategies, particle swarm optimization, tabu search, ant colony optimization, harmony search, big bang-big crunch, and bat-inspired search. The main concern of the study is to evaluate the performance of aforementioned nine techniques in discrete sizing optimization of structural systems. The optimization algorithms, which are implemented in an unbiased coding platform, are evaluated and compared in terms of their solution accuracies and reliabilities using a real size structural design instance. Here, the design criteria imposed by AISC-ASD (Allowable Stress Design Code of American Institute of Steel Construction) are considered in the course of optimization. The study provides general guidelines about the efficiency of investigated algorithms in practical structural optimization applications.

[1]  O. Hasançebi,et al.  Optimal design of planar and space structures with genetic algorithms , 2000 .

[2]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[3]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[4]  Mehmet Polat Saka,et al.  Optimum Design of Steel Frames using Stochastic Search Techniques Based on Natural Phenomena: A Review , 2007 .

[5]  O. Hasançebi,et al.  OPTIMUM DESIGN OF GEODESIC STEEL DOMES UNDER CODE PROVISIONS USING METAHEURISTIC TECHNIQUES , 2010 .

[6]  Kamran Behdinan,et al.  Particle swarm approach for structural design optimization , 2007 .

[7]  M. P. Saka,et al.  Adaptive Harmony Search Method for Structural Optimization , 2010 .

[8]  Osman Kaan Erol,et al.  EVALUATING EFFICIENCY OF BIG-BANG BIG-CRUNCH ALGORITHM IN BENCHMARK ENGINEERING OPTIMIZATION PROBLEMS , 2011 .

[9]  Xin-She Yang,et al.  Bat algorithm: a novel approach for global engineering optimization , 2012, 1211.6663.

[10]  J. A. Bland Discrete-variable optimal structural design using tabu search , 1995 .

[11]  Souran Manoochehri,et al.  GENERATING OPTIMAL CONFIGURATIONS IN STRUCTURAL DESIGN USING SIMULATED ANNEALING , 1997 .

[12]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[13]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[14]  Fuat Erbatur,et al.  Optimum design of frames , 1992 .

[15]  O. Hasançebi,et al.  A bat-inspired algorithm for structural optimization , 2013 .

[16]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[17]  Ali Kaveh,et al.  Topology optimization of trusses using genetic algorithm, force method and graph theory , 2003 .

[18]  O. Hasançebi,et al.  Optimization of truss bridges within a specified design domain using evolution strategies , 2007 .

[19]  Shahram Pezeshk,et al.  Design of Nonlinear Framed Structures Using Genetic Optimization , 2000 .

[20]  Richard J. Balling,et al.  Optimal Steel Frame Design by Simulated Annealing , 1991 .

[21]  O. Hasançebi,et al.  Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures , 2009 .

[22]  Carmine Pappalettere,et al.  Metaheuristic Design Optimization of Skeletal Structures: A Review , 2010 .

[23]  Charles V. Camp DESIGN OF SPACE TRUSSES USING BIG BANG–BIG CRUNCH OPTIMIZATION , 2007 .

[24]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[25]  Mehmet Polat Saka,et al.  Optimum design of steel frames with stability constraints , 1991 .

[26]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[27]  M. Papadrakakis,et al.  Structural optimization using evolutionary algorithms , 2002 .

[28]  J. Sobieszczanski-Sobieski,et al.  Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization , 2004 .

[29]  Luciano Lamberti,et al.  An efficient simulated annealing algorithm for design optimization of truss structures , 2008 .

[30]  P. Fourie,et al.  The particle swarm optimization algorithm in size and shape optimization , 2002 .

[31]  O. Hasançebi,et al.  Discrete approaches in evolution strategies based optimum design of steel frames , 2007 .

[32]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[33]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[34]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[35]  Mehmet Polat Saka,et al.  Optimum Geometry Design of Geodesic Domes Using Harmony Search Algorithm , 2007 .

[36]  Mehmet Polat Saka,et al.  Optimum design of steel sway frames to BS5950 using harmony search algorithm , 2009 .

[37]  Georg Thierauf,et al.  Evolution strategies for solving discrete optimization problems , 1996 .

[38]  David E. Goldberg,et al.  ENGINEERING OPTIMIZATION VIA GENETIC ALGORITHM, IN WILL , 1986 .

[39]  A. Dhingra,et al.  Single and multiobjective structural optimization in discrete‐continuous variables using simulated annealing , 1995 .

[40]  Mehmet Polat Saka,et al.  Improving the performance of simulated annealing in structural optimization , 2010 .

[41]  Barron J. Bichon,et al.  Design of Steel Frames Using Ant Colony Optimization , 2005 .

[42]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[43]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[44]  Amir Hossein Gandomi,et al.  Bat algorithm for constrained optimization tasks , 2012, Neural Computing and Applications.

[45]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[46]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[47]  Wang Yuan-yuan,et al.  Particle Swarm Optimization Algorithm , 2009 .