Application of an Eye Tracker Over Facility Layout Problem to Minimize User Fatigue

With interactive evolutionary computation it is possible to introduce the subjective preferences of the decision maker within the general algorithm evolution criteria. The problem that generates this is user fatigue, since it has to evaluate a considerable number of plants designs in each generation. To avoid user fatigue it is proposed to substitute the direct evaluation through the mouse by means of a numerical scale by an eye tracking system in which the system “captures” the evaluation that the user assigns to the plants through the gaze behavior. This article presents a first approximation to this solution. The results obtained in the experiments are promising and a clear relationship between the parameters that define the gaze behavior of the user with the score assigned to the designs can be seen.

[1]  Jerzy Grobelny,et al.  The Effects of Background Color, Shape and Dimensionality on Purchase Intentions in a Digital Product Presentation , 2016, HCI.

[2]  Genaro J. Gutierrez,et al.  Algorithms for robust single and multiple period layout planning for manufacturing systems , 1992 .

[3]  In-Jun Jeong,et al.  An interactive desirability function method to multiresponse optimization , 2009, Eur. J. Oper. Res..

[4]  Philippe Collard,et al.  Eye-tracking evolutionary algorithm to minimize user fatigue in IEC applied to interactive one-max problem , 2007, GECCO '07.

[5]  Sándor Kovács,et al.  Visual attention accompanying food decision process: An alternative approach to choose the best models , 2016 .

[6]  Ashutosh Tiwari,et al.  An interactive genetic algorithm-based framework for handling qualitative criteria in design optimization , 2007, Comput. Ind..

[7]  Meghna Babbar-Sebens,et al.  Interactive Genetic Algorithm with Mixed Initiative Interaction for multi-criteria ground water monitoring design , 2012, Appl. Soft Comput..

[8]  Elwood S. Buffa,et al.  A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities , 1963 .

[9]  Rrk Sharma,et al.  A review of different approaches to the facility layout problems , 2006 .

[10]  César Hervás-Martínez,et al.  An evolutionary neural system for incorporating expert knowledge into the UA-FLP , 2014, Neurocomputing.

[11]  Henri Pierreval,et al.  Facility layout problems: A survey , 2007, Annu. Rev. Control..

[12]  Hideyuki Takagi,et al.  Evaluation of Sequential, Multi-objective, and Parallel Interactive Genetic Algorithms for Multi-objective Floor Plan Optimisation , 2006, EvoWorkshops.

[13]  Hideyuki Takagi,et al.  Acceleration of EC convergence with landscape visualization and human intervention , 2002, Appl. Soft Comput..

[14]  Henri Pierreval,et al.  A novel hybrid evolutionary approach for capturing decision maker knowledge into the unequal area facility layout problem , 2015, Expert Syst. Appl..

[15]  Christian Lovis,et al.  Use of eye-tracking technology in clinical reasoning: a systematic review , 2015, MIE.

[16]  Xavier Llorà,et al.  Analyzing active interactive genetic algorithms using visual analytics , 2006, GECCO '06.

[17]  Joseph H. Goldberg,et al.  Computer interface evaluation using eye movements: methods and constructs , 1999 .

[18]  Ying Liu,et al.  Eye-tracking based adaptive user interface: implicit human-computer interaction for preference indication , 2011, Journal on Multimodal User Interfaces.

[19]  Gideon Avigad,et al.  Interactive Evolutionary Multiobjective Search and Optimization of Set-Based Concepts , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  Jacob L. Orquin,et al.  Attention and choice: a review on eye movements in decision making. , 2013, Acta psychologica.

[21]  Klaus Dürrschmid,et al.  Gazing behavior, choice and color of food: Does gazing behavior predict choice? , 2013 .

[22]  Sergiu M. Dascalu,et al.  Interactive Genetic Algorithms for User Interface Design , 2007, 2007 IEEE Congress on Evolutionary Computation.

[23]  Hideyuki Takagi,et al.  Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation , 2001, Proc. IEEE.

[24]  Kalyanmoy Deb,et al.  An interactive evolutionary multi-objective optimization and decision making procedure , 2010, Appl. Soft Comput..

[25]  Denis Pallez,et al.  Analyzing human gaze path during an interactive optimization task , 2010, EGIHMI '10.

[26]  K. Miettinen,et al.  Incorporating preference information in interactive reference point methods for multiobjective optimization , 2009 .

[27]  Tim Holmes,et al.  Eye on the prize: using overt visual attention to drive fitness for interactive evolutionary computation , 2008, GECCO '08.

[28]  Sushil J. Louis,et al.  IGAP: interactive genetic algorithm peer to peer , 2008, GECCO '08.

[29]  Da Ruan,et al.  Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems , 2006, Inf. Sci..

[30]  Conor Ryan,et al.  Genetic Programming for Subjective Fitness Function Identification , 2004, EuroGP.

[31]  Henri Pierreval,et al.  Handling qualitative aspects in Unequal Area Facility Layout Problem: An Interactive Genetic Algorithm , 2013, Appl. Soft Comput..

[32]  Xavier Llorà,et al.  Combating user fatigue in iGAs: partial ordering, support vector machines, and synthetic fitness , 2005, GECCO '05.

[33]  Denis Pallez,et al.  Paired Comparisons-based Interactive Differential Evolution , 2009, ArXiv.

[34]  R. Säljö,et al.  Expertise Differences in the Comprehension of Visualizations: a Meta-Analysis of Eye-Tracking Research in Professional Domains , 2011 .

[35]  Masafumi Hagiwara,et al.  IDSET: Interactive Design System using Evolutionary Techniques , 2001, Comput. Aided Des..

[36]  Jerzy Grobelny,et al.  An Eye Tracking Based Examination of Visual Attention During Pairwise Comparisons of a Digital Product's Package , 2016, HCI.