Constrained Inverse Regression for Incorporating Prior Information

Inverse regression methods facilitate dimension-reduction analyses of high-dimensional data by extracting a small number of factors that are linear combinations of the original predictor variables. But the estimated factors may not lend themselves readily to interpretation consistent with prior information. Our approach to solving this problem is to first incorporate prior information via theory- or data-driven constraints on model parameters, and then apply the proposed method, constrained inverse regression (CIR), to extract factors that satisfy the constraints. We provide chi-squared and t tests to assess the significance of each factor and its estimated coefficients, and we also generalize CIR to other inverse regression methods in situations where both dimension reduction and factor interpretation are important. Finally, we investigate CIR's small-sample performance, test data-driven constraints, and present a marketing example to illustrate its use in discovering meaningful factors that influence the desirability of brand logos.

[1]  Chun-Houh Chen,et al.  CAN SIR BE AS POPULAR AS MULTIPLE LINEAR REGRESSION , 2003 .

[2]  R. Cook,et al.  Estimating the structural dimension of regressions via parametric inverse regression , 2001 .

[3]  Robin Darton,et al.  Rotation in Factor Analysis , 1980 .

[4]  W. Gander,et al.  A Constrained Eigenvalue Problem , 1989 .

[5]  I. Jolliffe Principal Component Analysis , 2002 .

[6]  Joseph A. Cote,et al.  Guidelines for Selecting or Modifying Logos , 1998 .

[7]  Calyampudi Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications , 1967 .

[8]  R. Cook,et al.  Optimal sufficient dimension reduction in regressions with categorical predictors , 2002 .

[9]  Prasad A. Naik,et al.  A New Dimension Reduction Approach for Data-Rich Marketing Environments: Sliced Inverse Regression , 2000 .

[10]  R. Cook,et al.  Extending Sliced Inverse Regression , 2001 .

[11]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[12]  R. Cook,et al.  Dimension Reduction in Binary Response Regression , 1999 .

[13]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.

[14]  R. Cook,et al.  Principal Hessian Directions Revisited , 1998 .

[15]  Prasad A. Naik,et al.  Single‐index model selections , 2001 .

[16]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[17]  A. Juditsky,et al.  Direct estimation of the index coefficient in a single-index model , 2001 .

[18]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[19]  R. R. Hocking Methods and Applications of Linear Models: Regression and the Analysis of Variance , 2003 .

[20]  R. Cook,et al.  Theory & Methods: Special Invited Paper: Dimension Reduction and Visualization in Discriminant Analysis (with discussion) , 2001 .

[21]  Ker-Chau Li,et al.  Slicing Regression: A Link-Free Regression Method , 1991 .

[22]  W. Härdle,et al.  Optimal Smoothing in Single-index Models , 1993 .

[23]  S. R. Searle Linear Models , 1971 .

[24]  King C. P. Li High dimensional data analysis via the sir/phd approach , 2000 .

[25]  Kerby Shedden,et al.  Dimension Reduction for Multivariate Response Data , 2003 .

[26]  J. Horowitz Semiparametric Methods in Econometrics , 2011 .

[27]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[28]  R. Dennis Cook,et al.  A Model-Free Test for Reduced Rank in Multivariate Regression , 2003 .

[29]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[30]  Carl F. Mela,et al.  Choice Models and Customer Relationship Management , 2005 .

[31]  Jan de Leeuw,et al.  Component analysis with different sets of constraints on different dimensions , 1995 .

[32]  S. Weisberg,et al.  Comments on "Sliced inverse regression for dimension reduction" by K. C. Li , 1991 .

[33]  Tosio Kato Perturbation theory for linear operators , 1966 .

[34]  Ker-Chau Li Sliced inverse regression for dimension reduction (with discussion) , 1991 .

[35]  Y. Takane,et al.  Principal component analysis with external information on both subjects and variables , 1991 .

[36]  Ker-Chau Li,et al.  On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma , 1992 .

[37]  Efstathia Bura Using linear smoothers to assess the structural dimension of regressions , 2001 .

[38]  H. Tong,et al.  An adaptive estimation of dimension reduction space, with discussion , 2002 .

[39]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[40]  Prasad A. Naik,et al.  Partial least squares estimator for single‐index models , 2000 .

[41]  J. Tukey,et al.  Multiple-Factor Analysis , 1947 .