Ionization balance and gain calculations for neon-like selenium x-ray laser plasmas

[1]  R. Elton,et al.  Short-wavelength laser calculations for electron pumping in carbonlike and heliumlike ions , 1977 .

[2]  James H. Scofield,et al.  X-Ray Attenuation Cross Sections for Energies 100 eV to 100 keV and Elements Z = 1 to Z = 92 , 1988 .

[3]  A. Vinogradov,et al.  Calculations of population inversion due to transitions in multiply charged neon-like ions in the 200–2000 Å range , 1980 .

[4]  Chen Effective L-shell fluorescence yields for sodiumlike and neonlike low-lying autoionizing states. , 1989, Physical review. A, General physics.

[5]  R. Elton Quasi-stationary population inversion on Kalpha transitions. , 1975, Applied optics.

[6]  C. H. Skinner,et al.  Review of soft x‐ray lasers and their applications , 1991 .

[7]  Dennis L. Matthews,et al.  Short wavelength x‐ray laser research at the Lawrence Livermore National Laboratory , 1992 .

[8]  Time resolved measurement of electron temperatures of exploding foil x-ray laser plasmas , 1993 .

[9]  A. Vinogradov,et al.  Population inversion of transitions in neon-like ions , 1977 .

[10]  R. Elton Extension of 3p ? 3s ion lasers into the vacuum ultraviolet region. , 1975, Applied optics.

[11]  Goldstein,et al.  Autoionization and radiationless electron capture in complex spectra. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[12]  D. L. Moores,et al.  Ionisation from the 3p and 3d sublevels of highly charged ions , 1980 .

[13]  M. Klapisch,et al.  The 1s-3p Kβ-like x-ray spectrum of highly ionized iron , 1977 .

[14]  Hagelstein Electron collisional excitation in F-like selenium. , 1986, Physical review. A, General physics.

[15]  Raymond C. Elton,et al.  X-ray lasers , 1990 .

[16]  Whitney,et al.  Analysis of pumping mechanisms affecting the gain of the J=0-1 and J=2-1 lines in neonlike selenium. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  M. Klapisch,et al.  A program for atomic wavefunction computations by the paramertic potential method , 1984 .

[18]  Stephen J. Goett,et al.  Scaled Collision Strengths for Hydrogenic Ions , 1981 .

[19]  Weaver,et al.  Demonstration of a soft x-ray amplifier. , 1985, Physical review letters.

[20]  K. Koshelev,et al.  Gain in the far vacuum ultraviolet region due to transitions in multiply charged ions , 1976 .

[21]  Bar-Shalom,et al.  Electron collision excitations in complex spectra of ionized heavy atoms. , 1988, Physical review. A, General physics.

[22]  Rosen,et al.  Exploding foil technique for achieving a soft x-ray laser. , 1985, Physical review letters.

[23]  Aleksandr V. Vinogradov,et al.  Gain in the 100–1000 Å range in a homogeneous stationary plasma , 1983 .

[24]  M. Rosen,et al.  Theory and design of soft x-ray laser experiments at the Lawrence Livermore National Laboratory , 1989 .

[25]  Clark,et al.  Steady-state ionization-balance calculations for a selenium plasma. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[26]  Amplification of ultraviolet radiation in a laser plasma , 1983 .

[27]  McLean,et al.  Soft x-ray lasing in neonlike germanium and copper plasmas. , 1987, Physical review letters.

[28]  D. H. Sampson,et al.  Semiempirical Cross-Sections and Rates for Excitation and for Ionization of Hydrogenic Ions by Electron Impact , 1971 .