Mixed Finite Element Methods - Theory and Discretization

This contribution is concerned with the formulation of mixed finite elements discretization schemes for nonlinear problems of solid mechanics. Thus continuum mechanics for solids is described in the first section to provide the necessary background for the numerical method. This includes necessary kinematical relations as well as the balance laws with their weak forms and the constitutive equations. The second section then describes mixed discretization schemes which can be applied to simulate nonlinear elastic problems including finite deformations.

[1]  T. Pian Derivation of element stiffness matrices by assumed stress distributions , 1964 .

[2]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[3]  R. E. Jones,et al.  Nonlinear finite elements , 1978 .

[4]  B. D. Reddy,et al.  The analysis of incompressible hyperelastic bodies by the finite element method , 1983 .

[5]  J. Meixner,et al.  S. Flügge, Herausgeber: Handbuch der Physik, Band III/3: Die nicht‐linearen Feldtheorien der Mechanik. Von C. Truesdell und W. Noll. Springer‐Verlag, Berlin/Heidelberg/New York 1965. VIII/602 Seiten. Preis: 198,‐ DM , 1967, Berichte der Bunsengesellschaft für physikalische Chemie.

[6]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[7]  P. Flory,et al.  Thermodynamic relations for high elastic materials , 1961 .

[8]  Peter Wriggers,et al.  A note on enhanced strain methods for large deformations , 1996 .

[9]  F. Brezzi,et al.  On drilling degrees of freedom , 1989 .

[10]  S. Reese On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity , 2005 .

[11]  Peter Wriggers,et al.  A nonlinear quadrilateral shell element with drilling degrees of freedom , 1992 .

[12]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[13]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[14]  K. Bathe,et al.  A finite element formulation for nonlinear incompressible elastic and inelastic analysis , 1987 .

[15]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[16]  K. Bathe,et al.  FINITE ELEMENT FORMULATIONS FOR LARGE DEFORMATION DYNAMIC ANALYSIS , 1975 .

[17]  K. Bathe,et al.  The inf-sup test , 1993 .

[18]  K. Washizu Variational Methods in Elasticity and Plasticity , 1982 .

[19]  Edward L. Wilson,et al.  Incompatible Displacement Models , 1973 .

[20]  E. Wilson,et al.  A non-conforming element for stress analysis , 1976 .

[21]  Peter Wriggers,et al.  Nichtlineare Finite-Element-Methoden , 2001 .

[22]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[23]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[24]  Francisco Armero,et al.  On the formulation of enhanced strain finite elements in finite deformations , 1997 .

[25]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[26]  J. C. Simo,et al.  Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .

[27]  Peter Wriggers,et al.  Consistent gradient formulation for a stable enhanced strain method for large deformations , 1996 .

[28]  K. Bathe Finite Element Procedures , 1995 .

[29]  J. T. Oden,et al.  Numerical analysis of finite axisymmetric deformations of incompressible elastic solids of revolution , 1970 .

[30]  Peter Wriggers,et al.  A stabilization technique to avoid hourglassing in finite elasticity , 2000 .

[31]  J. M. Kennedy,et al.  Hourglass control in linear and nonlinear problems , 1983 .

[32]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[33]  S. Atluri,et al.  Formulation of a membrane finite element with drilling degrees of freedom , 1992 .

[34]  Edward L. Wilson,et al.  A robust quadrilateral membrane finite element with drilling degrees of freedom , 1990 .

[35]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[36]  B. Häggblad,et al.  Large strain solutions of rubber components , 1983 .

[37]  A. Ibrahimbegovic Nonlinear Solid Mechanics , 2009 .

[38]  J. C. Simo,et al.  Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .

[39]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[40]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[41]  B. D. Veubeke Stress function approach , 1975 .

[42]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[43]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[44]  J. Z. Zhu,et al.  The finite element method , 1977 .

[45]  Robert L. Taylor,et al.  Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems☆ , 1993 .

[46]  P. Chadwick Continuum Mechanics: Concise Theory and Problems , 1976 .