Second-Generation Curvelets on the Sphere

Curvelets are efficient to represent highly anisotropic signal content, such as a local linear and curvilinear structure. First-generation curvelets on the sphere, however, suffered from blocking artefacts. We present a new second-generation curvelet transform, where scale-discretized curvelets are constructed directly on the sphere. Scale-discretized curvelets exhibit a parabolic scaling relation, are well localized in both spatial and harmonic domains, support the exact analysis and synthesis of both scalar and spin signals, and are free of blocking artefacts. We present fast algorithms to compute the exact curvelet transform, reducing computational complexity from O(L5) to O(L3 log2 L) for signals band limited at L. The implementation of these algorithms is made publicly available. Finally, we present an illustrative application demonstrating the effectiveness of curvelets for representing directional curve-like features in natural spherical images.

[1]  Pierre Vandergheynst,et al.  Wavelets on the n-sphere and related manifolds , 1998 .

[2]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[3]  P. Baldi,et al.  Spherical Needlets for CMB Data Analysis , 2007, 0707.0844.

[4]  J. D. McEwen,et al.  Probing dark energy with steerable wavelets through correlation of WMAP and NVSS local morphological measures , 2007, 0704.0626.

[5]  Domenico Marinucci,et al.  Integrated Sachs-Wolfe effect from the cross-correlation of WMAP 3 year and NVSS: new results and constraints on dark energy , 2006 .

[6]  A. M. M. Scaife,et al.  Simulating full‐sky interferometric observations , 2008, 0803.2165.

[7]  Gerard Kerkyacharian,et al.  Spin Needlets for Cosmic Microwave Background Polarization Data Analysis , 2008, 0811.2881.

[8]  Pierre Vandergheynst,et al.  S2LET: A code to perform fast wavelet analysis on the sphere , 2012, ArXiv.

[9]  Michael P. Hobson,et al.  A directional continuous wavelet transform on the sphere , 2006, ArXiv.

[10]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[11]  C. A. Oxborrow,et al.  Planck 2015 results. II. Low Frequency Instrument data processings , 2013, 1502.05956.

[12]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[13]  Yves Wiaux,et al.  Localisation of directional scale-discretised wavelets on the sphere , 2015, ArXiv.

[14]  J. D. McEwen,et al.  Non-Gaussianity detections in the Bianchi VIIh corrected WMAP one-year data made with directional spherical wavelets , 2005, astro-ph/0510349.

[15]  Mohamed-Jalal Fadili,et al.  Curvelets and Ridgelets , 2009, Encyclopedia of Complexity and Systems Science.

[16]  A 6 σ detection of non-Gaussianity in the WMAP 1-year data using directional spherical wavelets , 2008 .

[17]  F. Rohrlich,et al.  Spin‐s Spherical Harmonics and ð , 1967 .

[18]  E. Candès,et al.  Continuous curvelet transform: II. Discretization and frames , 2005 .

[19]  P. Vielva,et al.  Cross-correlation of the cosmic microwave background and radio galaxies in real, harmonic and wavelet spaces: detection of the integrated Sachs–Wolfe effect and dark energy constraints , 2004 .

[20]  E. Candès,et al.  Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .

[21]  Jianwei Ma,et al.  A Review of Curvelets and Recent Applications , 2009 .

[22]  Pascal Audet,et al.  Toward mapping the effective elastic thickness of planetary lithospheres from a spherical wavelet analysis of gravity and topography , 2014 .

[23]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[24]  Gerlind Plonka-Hoch,et al.  The Curvelet Transform , 2010, IEEE Signal Processing Magazine.

[25]  Jason D. McEwen,et al.  Ieee Transactions on Signal Processing 1 Exact Wavelets on the Ball , 2022 .

[26]  P. Baldi,et al.  Asymptotics for spherical needlets , 2006, math/0606599.

[27]  Yves Wiaux,et al.  A Novel Sampling Theorem on the Sphere , 2011, IEEE Transactions on Signal Processing.

[28]  P. Vandergheynst,et al.  Wavelets on the 2-sphere: A group-theoretical approach , 1999 .

[29]  O. Blanc,et al.  Exact reconstruction with directional wavelets on the sphere , 2007, 0712.3519.

[30]  Carl-Fredrik Westin,et al.  Sparse Multi-Shell Diffusion Imaging , 2011, MICCAI.

[31]  Belgium,et al.  Correspondence principle between spherical and euclidean wavelets , 2005, astro-ph/0502486.

[32]  J.-L. Starck,et al.  Sparse component separation for accurate cosmic microwave background estimation , 2012, 1206.1773.

[33]  Jason D. McEwen,et al.  Ridgelet transform on the sphere , 2015, ArXiv.

[34]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[35]  Domenico Marinucci,et al.  The needlets bispectrum , 2008, 0802.4020.

[36]  C. A. Oxborrow,et al.  Planck2013 results. XII. Diffuse component separation , 2013, Astronomy & Astrophysics.

[37]  Domenico Marinucci,et al.  Spin Wavelets on the Sphere , 2008, 0811.2935.

[38]  J. D. McEwen,et al.  Data compression on the sphere , 2011, 1108.3900.

[39]  Mioara Mandea,et al.  From global to regional analysis of the magnetic field on the sphere using wavelet frames , 2003 .

[40]  Paolo Baldi,et al.  Spherical needlets for cosmic microwave background data analysis , 2008 .

[41]  Domenico Marinucci,et al.  Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3 year and the NRAO VLA sky survey data: New results and constraints on dark energy , 2006 .

[42]  Yves Wiaux,et al.  A Novel Sampling Theorem on the Rotation Group , 2015, IEEE Signal Processing Letters.

[43]  Jean-Luc Starck,et al.  Multichannel Poisson denoising and deconvolution on the sphere: application to the Fermi Gamma-ray Space Telescope , 2012, 1206.2787.

[44]  Yogesh Rathi,et al.  On approximation of orientation distributions by means of spherical ridgelets , 2008, ISBI.

[45]  Pierre Vandergheynst,et al.  On the computation of directional scale-discretized wavelet transforms on the sphere , 2013, Optics & Photonics - Optical Engineering + Applications.

[46]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[47]  Yves Wiaux,et al.  Directional spin wavelets on the sphere , 2015, ArXiv.

[48]  P. Vielva,et al.  Detection of non-Gaussianity in the WMAP 1-year data using spherical wavelets , 2003 .

[49]  Domenico Marinucci,et al.  Mixed Needlets , 2010, 1006.3835.

[50]  C. K. Shum,et al.  Regional high‐resolution spatiotemporal gravity modeling from GRACE data using spherical wavelets , 2006 .

[51]  P. Vielva,et al.  Detection of Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe First-Year Data Using Spherical Wavelets , 2004 .

[52]  Jean-Luc Starck,et al.  Wavelets, ridgelets and curvelets on the sphere , 2006 .

[53]  G. W. Pratt,et al.  Planck 2013 results Special feature Planck 2013 results . XXV . Searches for cosmic strings and other topological defects , 2014 .

[54]  J. Cardoso,et al.  A full sky, low foreground, high resolution CMB map from WMAP , 2008, 0807.0773.

[55]  Jason D. McEwen,et al.  Fourier-Laguerre transform, convolution and wavelets on the ball , 2013, ArXiv.

[56]  M. P. Hobson,et al.  Cosmological Applications of a Wavelet Analysis on the Sphere , 2007, 0704.3158.

[57]  Paul Debevec Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography , 2008, SIGGRAPH Classes.

[58]  Guust Nolet,et al.  Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity , 2011 .

[59]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[60]  Marcos López-Caniego,et al.  Wavelets on the sphere. Application to the detection problem , 2006, 2006 14th European Signal Processing Conference.

[61]  Pencho Petrushev,et al.  Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..

[62]  Paul E. Debevec,et al.  Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography , 1998, SIGGRAPH '08.

[63]  P. Vielva,et al.  Steerable wavelet analysis of CMB structures alignment , 2006 .

[64]  G. Peccati,et al.  Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications , 2011 .

[65]  C. A. Oxborrow,et al.  Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.

[66]  E. Candès,et al.  Continuous curvelet transform , 2003 .