Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors

[1]  A. Melis,et al.  Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency , 2009 .

[2]  S. Ball,et al.  Hydrogen Production in Chlamydomonas: Photosystem II-Dependent and -Independent Pathways Differ in Their Requirement for Starch Metabolism1[W] , 2009, Plant Physiology.

[3]  C. Posten,et al.  Microalgae and terrestrial biomass as source for fuels--a process view. , 2009, Journal of biotechnology.

[4]  Andrew R. Bassett,et al.  Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. , 2009, The Plant journal : for cell and molecular biology.

[5]  P. Hegemann,et al.  Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene. , 2009, Gene.

[6]  Claudia Catalanotti,et al.  An Optimized, Chemically Regulated Gene Expression System for Chlamydomonas , 2008, PloS one.

[7]  A. Grossman,et al.  An original adaptation of photosynthesis in the marine green alga Ostreococcus , 2008, Proceedings of the National Academy of Sciences.

[8]  Graham R. Fleming,et al.  Zeaxanthin Radical Cation Formation in Minor Light-harvesting Complexes of Higher Plant Antenna* , 2008, Journal of Biological Chemistry.

[9]  A. McDowall,et al.  Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. , 2007, Plant biotechnology journal.

[10]  Gilles Peltier,et al.  Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas , 2007, Proceedings of the National Academy of Sciences.

[11]  Sara L. Zimmer,et al.  The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions , 2007, Science.

[12]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[13]  Olaf Kruse,et al.  Improved Photobiological H2 Production in Engineered Green Algal Cells* , 2005, Journal of Biological Chemistry.

[14]  Emilio Fernández,et al.  Restriction enzyme site-directed amplification PCR: a tool to identify regions flanking a marker DNA. , 2005, Analytical biochemistry.

[15]  J. Rochaix,et al.  State transitions and light adaptation require chloroplast thylakoid protein kinase STN7 , 2005, Nature.

[16]  K. Niyogi,et al.  Functional Genomics of Eukaryotic Photosynthesis Using Insertional Mutagenesis of Chlamydomonas reinhardtii1 , 2005, Plant Physiology.

[17]  P. Horton,et al.  Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. , 2004, Journal of experimental botany.

[18]  Nandita Sarkar,et al.  Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. , 2004, The Plant journal : for cell and molecular biology.

[19]  J. Rochaix,et al.  Efficient Assembly of Photosystem II in Chlamydomonas reinhardtii Requires Alb3.1p, a Homolog of Arabidopsis ALBINO3 , 2004, The Plant Cell Online.

[20]  A. Grossman,et al.  A genome’s-eye view of the light-harvesting polypeptides of Chlamydomonas reinhardtii , 2004, Current Genetics.

[21]  C. Remacle,et al.  Photosynthesis and State Transitions in Mitochondrial Mutants of Chlamydomonas reinhardtii Affected in Respiration1 , 2003, Plant Physiology.

[22]  E. Stauber,et al.  Proteomics of Chlamydomonas reinhardtii Light-Harvesting Proteins , 2003, Eukaryotic Cell.

[23]  M. Schmid,et al.  Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana , 2003, Science.

[24]  J. Rochaix,et al.  Role of Chloroplast Protein Kinase Stt7 in LHCII Phosphorylation and State Transition in Chlamydomonas , 2003, Science.

[25]  Juergen E. W. Polle,et al.  tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size , 2003, Planta.

[26]  J. Ecker,et al.  GUN4, a Regulator of Chlorophyll Synthesis and Intracellular Signaling , 2003, Science.

[27]  S. Goff,et al.  A High-Throughput Arabidopsis Reverse Genetics System Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.004630. , 2002, The Plant Cell Online.

[28]  A. Melis,et al.  Probing green algal hydrogen production. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[29]  K. Niyogi,et al.  A Major Light-Harvesting Polypeptide of Photosystem II Functions in Thermal Dissipation Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.002154. , 2002, The Plant Cell Online.

[30]  R. Bassi,et al.  Chromophore organization in the higher-plant photosystem II antenna protein CP26. , 2002, Biochemistry.

[31]  J. Rochaix,et al.  Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii , 2002, EMBO reports.

[32]  P. Hegemann,et al.  A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. , 2001, Gene.

[33]  F. Wollman,et al.  TCA1, a single nuclear-encoded translational activator specific for petA mRNA in Chlamydomonas reinhardtii chloroplast. , 2001, Genetics.

[34]  H. Teramoto,et al.  Identification of Lhcb gene family encoding the light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. , 2001, Plant & cell physiology.

[35]  D. Drapier,et al.  Assembly-controlled regulation of chloroplast gene translation. , 2001, Biochemical Society transactions.

[36]  J. Rochaix,et al.  The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii , 2001, Molecular Genetics and Genomics.

[37]  M. Ghirardi,et al.  Microalgae: a green source of renewable H(2). , 2000, Trends in biotechnology.

[38]  J. Benemann,et al.  Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source , 2000, Planta.

[39]  G. Bernardi,et al.  The distribution of T‐DNA in the genomes of transgenic Arabidopsis and rice , 2000, FEBS letters.

[40]  M. Timko,et al.  yellow-in-the-dark Mutants of Chlamydomonas Lack the CHLL Subunit of Light-Independent Protochlorophyllide Reductase , 2000, Plant Cell.

[41]  W. Vermaas,et al.  Increased Production of Zeaxanthin and Other Pigments by Application of Genetic Engineering Techniques toSynechocystis sp. Strain PCC 6803 , 2000, Applied and Environmental Microbiology.

[42]  J. Rochaix,et al.  Isolation and Characterization of Photoautotrophic Mutants ofChlamydomonas reinhardtii Deficient in State Transition* , 1999, The Journal of Biological Chemistry.

[43]  L Nussaume,et al.  A Chromodomain Protein Encoded by the Arabidopsis CAO Gene Is a Plant-Specific Component of the Chloroplast Signal Recognition Particle Pathway That Is Involved in LHCP Targeting , 1999, Plant Cell.

[44]  John R. Benemann,et al.  Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells , 1998, Journal of Applied Phycology.

[45]  Kazuichi Yoshida,et al.  Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  J. Benemann,et al.  Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae) , 1998, Photosynthesis Research.

[47]  T. Hase,et al.  Cloning of the gene encoding a protochlorophyllide reductase: the physiological significance of the co-existence of light-dependent and -independent protochlorophyllide reduction systems in the cyanobacterium Plectonema boryanum. , 1998, Plant & cell physiology.

[48]  J. Rochaix Post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii , 1996, Plant Molecular Biology.

[49]  S. Reinbothe,et al.  Regulation of Chlorophyll Biosynthesis in Angiosperms , 1996, Plant physiology.

[50]  Yaoguang Liu,et al.  Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. , 1995, Genomics.

[51]  S. Purton,et al.  Playing tag with Chlamydomonas. , 1994, Trends in cell biology.

[52]  M. Timko,et al.  Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. , 1993, The Plant cell.

[53]  K. Kindle,et al.  Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[54]  A. Melis,et al.  Dynamics of photosynthetic membrane composition and function , 1991 .

[55]  G. Schmidt,et al.  Chlororespiration: an adaptation to nitrogen deficiency in Chlamydomonas reinhardtii. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[56]  F. Wollman,et al.  The chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii , 1991, Planta.

[57]  K. Kindle High-frequency nuclear transformation of Chlamydomonas reinhardtii. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Elizabeth H. Harris,et al.  The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use , 1989 .

[59]  A. Melis Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size , 1989 .

[60]  P. Gans,et al.  Interaction between Chloroplasts and Mitochondria in Microalgae: Role of Glycolysis. , 1988, Plant physiology.

[61]  D. Hartl,et al.  Genetic applications of an inverse polymerase chain reaction. , 1988, Genetics.

[62]  B. Osborne,et al.  Light and Photosynthesis in Aquatic Ecosystems. , 1985 .

[63]  R. Levine,et al.  Detecting mutants that have impaired photosynthesis by their increased level of fluorescence. , 1967, Plant physiology.

[64]  Winton M. Blount,et al.  INCREASED PRODUCTION , 2011 .

[65]  C. Sequeira,et al.  HYDROGEN PRODUCTION , 2010 .

[66]  E. H. Harris The Chlamydomonas sourcebook , 2009 .

[67]  K. Turksen,et al.  Isolation and characterization , 2006 .

[68]  Gianfelice Cinque,et al.  The Soret absorption properties of carotenoids and chlorophylls in antenna complexes of higher plants , 2004, Photosynthesis Research.

[69]  Lu Zhang,et al.  Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. , 2000, Plant physiology.

[70]  U. K. Laemmli,et al.  Cleavage of structural proteins during , 1970 .

[71]  John S. Burlew,et al.  Algal culture from laboratory to pilot plant. , 1953 .