Online monitoring and control of froth flotation systems with machine vision: A review

[1]  J. Mosher,et al.  PT Freeport Indonesia's mass-pull control strategy for rougher flotation , 2008 .

[2]  J. H. Ahn,et al.  Color measurements of minerals and mineralized froths , 1993 .

[3]  F Nicolls,et al.  Texture measures for improved watershed segmentation of froth images , 2004 .

[4]  D. La Rosa,et al.  A correlation between Visiofroth(TM) measurements and the performance of a flotation cell , 2007 .

[5]  S. C. Wang,et al.  On-line system setup in a cellar of a flotation plant , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[6]  Chris Aldrich,et al.  Visualisation of plant disturbances using self-organising maps , 1996 .

[7]  Stephen J. Neethling,et al.  Simple relationships for predicting the recovery of liquid from flowing foams and froths , 2003 .

[8]  Jayson Tessier,et al.  Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes—Part I: Flotation control based on froth textural characteristics , 2006 .

[9]  Chris Aldrich,et al.  The significance of flotation froth appearance for machine vision control , 1996 .

[10]  Jan J. Cilliers,et al.  The froth stability column : Measuring froth stability at an industrial scale , 2006 .

[11]  Aldo Cipriano,et al.  A REAL TIME VISUAL SENSOR FOR SUPERVISION OF FLOTATION CELLS , 1998 .

[12]  Giuseppe Bonifazi,et al.  Prediction of complex sulfide flotation performances by a combined 3D fractal and colour analysis of the froths , 2000 .

[13]  John F. MacGregor,et al.  Flotation froth monitoring using multiresolutional multivariate image analysis , 2005 .

[14]  N Seghat Aleslami,et al.  MODELING OF TEXTURE AND COLOR FROTH CHARACTERISTICS FOR EVALUATION OF FLOTATION PERFORMANCE IN SARCHESHMEH COPPER PILOT PLANT, USING IMAGE ANALYSIS AND NEURAL NETWORKS , 2004 .

[15]  D. W. Moolman,et al.  The identification of perturbations in a base metal flotation plant using computer vision of the froth surface , 1997 .

[16]  L. Wen Research on Digital Image Processing of Coal Flotation Froth(II) --The square neighbor algorithm for extracting features of digital coal flotation froth image , 2002 .

[17]  Wang Yong The gray run length and its statistical texture features of coal flotation froth image , 2006 .

[18]  Chris Aldrich,et al.  The monitoring of froth surfaces on industrial flotation plants using connectionist image processing techniques , 1995 .

[19]  Janusz S. Laskowski,et al.  Frothing in flotation II , 1998 .

[20]  Z. T. Mathe,et al.  Review of froth modelling in steady state flotation systems , 1998 .

[21]  Felipe Núñez,et al.  Visual information model based predictor for froth speed control in flotation process , 2009 .

[22]  Jing Zhu,et al.  Application of image recognition system in flotation process , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[23]  J. Cilliers Physics-based froth modelling: new developments and applications , 2009 .

[24]  Chris Aldrich,et al.  The interrelationship between surface froth characteristics and industrial flotation performance , 1996 .

[25]  D. A. Rice,et al.  The development of a color sensor system to measure mineral compositions , 1995 .

[26]  Jorma Miettunen,et al.  IMAGE ANALYSIS BASED CONTROL OF COPPER FLOTATION , 2005 .

[27]  Jan J. Cilliers,et al.  A model to describe flotation performance based on physics of foams and froth image analysis , 2002 .

[28]  Zeki Aktas,et al.  The effect of reagent addition strategy on the performance of coal flotation , 2004 .

[29]  W.B.J. Zimmermann,et al.  Simple model of equilibrium froth height for foams: an application for CNN image analysis , 1996, 1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96).

[30]  Zeki Aktas,et al.  Interpretation of the effect of froth structure on the performance of froth flotation using image analysis , 1998 .

[31]  Yang Li,et al.  A Classification of Flotation Froth Based on Geometry , 2007, 2007 International Conference on Mechatronics and Automation.

[32]  L. G. Austin,et al.  A froth based flotation kinetic model , 1994 .

[33]  Sten Bay Jørgensen,et al.  Bubble Size Estimation for Flotation Processes , 2008 .

[34]  James A. Finch,et al.  Continuous air rate measurement in flotation cells: Some fundamental considerations , 2006 .

[35]  H. Hyotyniemi,et al.  Optical Spectrum Based Estimation of Grades in Mineral Flotation , 2006, 2006 IEEE International Conference on Industrial Technology.

[36]  H.C.S. Rughooputh,et al.  Neural network process vision systems for flotation process , 2002 .

[37]  Weixing Wang,et al.  A robust bubble delineation algorithm for froth images , 1999, Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296).

[38]  Nick J. Miles,et al.  The use of grey level measurement in predicting coal flotation performance , 1996 .

[39]  C. Aldrich,et al.  Relationship between solids flux and froth features in batch flotation of sulphide ore , 2005 .

[40]  Chris Aldrich,et al.  Monitoring of metallurgical process plants by using biplots , 2004 .

[41]  Sameer H. Morar,et al.  Froth imaging, air recovery and bubble loading to describe flotation bank performance , 2007 .

[42]  Paul Moore Tyres: Treading carefully , 2006 .

[43]  Stephen J. Neethling,et al.  The effect of weir angle on bubble motion in a flotation froth: Visual modelling and verification , 1998 .

[44]  Chris Aldrich,et al.  The effect of mothers on bubble size distributions in flotation pulp phases and surface froths , 2000 .

[45]  Silvia Serranti,et al.  A combined morphological and color based approach to characterize flotation froth bubbles , 1999, Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296).

[46]  Peter N. Holtham,et al.  On-line analysis of froth surface in coal and mineral flotation using JKFrothCam , 2002 .

[47]  Ying Sun,et al.  Motion Estimation Via Cluster Matching , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Henrik Schiøler,et al.  Trophallaxis in robotic swarms - beyond energy autonomy , 2008, 2008 10th International Conference on Control, Automation, Robotics and Vision.

[49]  Ridvan Berber,et al.  Off-line image analysis for froth flotation of coal , 2004, Comput. Chem. Eng..

[50]  Jan J. Cilliers,et al.  An image processing algorithm for measurement of flotation froth bubble size and shape distributions , 1997 .

[51]  Jan J. Cilliers,et al.  Calculation of the specific surface area in flotation , 2000 .

[52]  W. Wang,et al.  Froth delineation based on image classification , 2003 .

[53]  Zhao Guo-qing Feature extraction based on image segmentation of coal flotation froth , 2007 .

[54]  Stephen J. Neethling Simple approximations for estimating froth recovery , 2008 .

[55]  Gordon Forbes,et al.  Texture and Bubble Size Measurements for Modelling Concentrate Grade in Flotation Froth Systems , 2007 .

[56]  D. J. McKee,et al.  Automatic flotation control- a review of 20 years of effort , 1991 .

[57]  Weixing Wang,et al.  Image analysis and computer vision for mineral froth , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[58]  J. M. Hargrave,et al.  Diagnosis of concentrate grade and mass flowrate in tin flotation from colour and surface texture analysis , 1997 .

[59]  John F. MacGregor,et al.  Froth-based modeling and control of flotation processes , 2008 .

[60]  Chris Aldrich,et al.  Effect of particle size on flotation performance of complex sulphide ores , 1999 .

[61]  Sameer H. Morar,et al.  The use of a colour parameter in a machine vision system, Smartfroth, to evaluate copper flotation performance At Rio Tinto’s Kennecott Utah copper concentrator , 2005 .

[62]  Jani Kaartinen,et al.  Machine-vision-based control of zinc flotation—A case study , 2006 .

[63]  Giuseppe Bonifazi,et al.  Characterisation of flotation froth colour and structure by machine vision , 2001 .

[64]  Stephen J. Neethling,et al.  The entrainment factor in froth flotation: Model for particle size and other operating parameter effects , 2009 .

[65]  Sameer H. Morar,et al.  An evaluation of factors affecting the robustness of colour measurement and its potential to predict the grade of flotation concentrate , 2009 .

[66]  J. Macgregor,et al.  Image texture analysis: methods and comparisons , 2004 .

[67]  X. Zheng,et al.  Modelling of froth transportation in industrial flotation cells: Part II. Modelling of froth transportation in an Outokumpu tank flotation cell at the Anglo Platinum Bafokeng–Rasimone Platinum Mine (BRPM) concentrator , 2004 .

[68]  Chris Aldrich,et al.  Digital image processing as a tool for on-line monitoring of froth in flotation plants , 1994 .

[69]  C. Aldrich,et al.  Batch flotation of a complex sulphide ore by use of pulsated sparged air , 2000 .

[70]  Chris Aldrich,et al.  Relationship between surface froth features and process conditions in the batch flotation of a sulphide ore , 1997 .

[71]  Paolo Massacci Proceedings of the XXI International Mineral Processing Congress , 2000 .

[72]  Weihua Gui,et al.  A Segmentation Method Based on Clustering Pre-segmentation and High-low Scale Distance Reconstruction for Colour Froth Image: A Segmentation Method Based on Clustering Pre-segmentation and High-low Scale Distance Reconstruction for Colour Froth Image , 2011 .

[73]  S. T. Hall,et al.  A Fractal Characterisation of the Structure of Coal Froths , 1998 .

[74]  Jani Kaartinen,et al.  Optical spectrum based measurement of flotation slurry contents , 2008 .

[75]  Heikki Hyötyniemi,et al.  On characterization of pulp and froth in cells of flotation plant , 1997 .

[76]  Jan J. Cilliers,et al.  The froth stability column : linking froth stability and flotation performance , 2005 .

[77]  G. Forbes,et al.  Unsupervised classification of dynamic froths , 2007 .

[78]  R. Pérez-Garibay,et al.  Neural networks to estimate bubble diameter and bubble size distribution of flotation froth surfaces , 2009 .

[79]  Jan J. Cilliers,et al.  Dynamic froth stability in froth flotation , 2003 .

[80]  J-P. Franzidis,et al.  Quantifying contributions to froth stability in porphyry copper plants , 2009 .

[81]  Nick J. Miles,et al.  Applying Froth Imaging Techniques to Assess Fine Coal Dewatering Behavior , 2006 .

[82]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[83]  L.F.C. Jeanmeure,et al.  A CNN video based control system for a coal froth flotation , 1998, 1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359).

[84]  Dee Bradshaw,et al.  Effective use of bubble size distribution measurements , 2006 .

[85]  J-P. Franzidis,et al.  An evaluation of different models of water recovery in flotation , 2006 .

[86]  A. Cipriano,et al.  Expert system for supervision of mineral flotation cells using artificial vision , 1997, ISIE '97 Proceeding of the IEEE International Symposium on Industrial Electronics.

[87]  John F. MacGregor,et al.  On the extraction of spectral and spatial information from images , 2007 .

[88]  C. Aldrich,et al.  Effect of Preconditioning on the Flotation of Coal , 2005 .

[89]  S. P. Barber,et al.  Effects of froth structure and mobility on the performance and simulation of continuously operated flotation cells , 1986 .

[90]  C. Aldrich,et al.  Effects of impeller speed and aeration rate on flotation performance of sulphide ore , 2006 .

[91]  G. De Jager,et al.  An investigation into the suitability of various motion estimation algorithms for froth imaging , 1998, Proceedings of the 1998 South African Symposium on Communications and Signal Processing-COMSIG '98 (Cat. No. 98EX214).

[92]  Chris Aldrich,et al.  Kernel-based fault diagnosis on mineral processing plants , 2006 .

[93]  Chris Aldrich,et al.  The classification of froth structures in a copper flotation plant by means of a neural net , 1995 .

[94]  Chris Aldrich,et al.  The interpretation of flotation froth surfaces by using digital image analysis and neural networks , 1995 .

[95]  Jani Kaartinen,et al.  Image analysis based control of zinc flotation - a multi-camera approach , 2002, 7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002..

[96]  D.M. Weber,et al.  A practical system for real-time on-plant flotation froth visual parameter extraction , 1999, 1999 IEEE Africon. 5th Africon Conference in Africa (Cat. No.99CH36342).

[97]  Jan J. Cilliers,et al.  The relationship between the peak in air recovery and flotation bank performance , 2009 .

[98]  Jari Hätönen,et al.  Image analysis based control of zinc flotation , 2001 .

[99]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[100]  Chris Aldrich,et al.  CHARACTERIZATION OF FLOTATION PROCESSES WITH SELF-ORGANIZING NEURAL NETS , 1995 .

[101]  King-Sun Fu,et al.  A survey on image segmentation , 1981, Pattern Recognit..