Hedging American contingent claims with constrained portfolios

Abstract. The valuation theory for American Contingent Claims, due to Bensoussan (1984) and Karatzas (1988), is extended to deal with constraints on portfolio choice, including incomplete markets and borrowing/short-selling constraints, or with different interest rates for borrowing and lending. In the unconstrained case, the classical theory provides a single arbitrage-free price $u_0$; this is expressed as the supremum, over all stopping times, of the claim's expected discounted value under the equivalent martingale measure. In the presence of constraints, $\{u_0\}$ is replaced by an entire interval $[h_{\rm low}, h_{\rm up}]$ of arbitrage-free prices, with endpoints characterized as $h_{\rm low} = \inf_{\nu\in{\cal D}} u_\nu, h_{\rm up} = \sup_{\nu\in{\cal D}} u_\nu$. Here $u_\nu$ is the analogue of $u_0$, the arbitrage-free price with unconstrained portfolios, in an auxiliary market model ${\cal M}_\nu$; and the family $\{{\cal M}_\nu\}_{\nu\in{\cal D}}$ is suitably chosen, to contain the original model and to reflect the constraints on portfolios. For several such constraints, explicit computations of the endpoints are carried out in the case of the American call-option. The analysis involves novel results in martingale theory (including simultaneous Doob-Meyer decompositions), optimal stopping and stochastic control problems, stochastic games, and uses tools from convex analysis.

[1]  N. Karoui,et al.  Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .

[2]  Peter Carr,et al.  Fast Accurate Valuation of American Options , 1994 .

[3]  I. Karatzas On the pricing of American options , 1988 .

[4]  M. C. Quenez,et al.  Programmation dynamique et évaluation des actifs contingents en marché incomplet , 1991 .

[5]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[6]  J. Hull Options, futures, and other derivative securities , 1989 .

[7]  Damien Lamberton,et al.  Convergence of the Critical Price In the Approximation of American Options , 1993 .

[8]  S. Ross The arbitrage theory of capital asset pricing , 1976 .

[9]  Jakša Cvitanić,et al.  Hedging Contingent Claims with Constrained Portfolios , 1993 .

[10]  A. G. Fakeev Optimal Stopping Rules for Stochastic Processes with Continuous Parameter , 1970 .

[11]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[12]  H. Johnson An Analytic Approximation for the American Put Price , 1983, Journal of Financial and Quantitative Analysis.

[13]  D. Martineau,et al.  Numerical Valuation of High Dimensional , 1995 .

[14]  Damien Lamberton,et al.  ERROR ESTIMATES FOR THE BINOMIAL APPROXIMATION OF AMERICAN PUT OPTIONS , 1998 .

[15]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[16]  Christophe Stricker,et al.  Couverture des actifs contingents et prix maximum , 1994 .

[17]  N. Karoui Les Aspects Probabilistes Du Controle Stochastique , 1981 .

[18]  D. Lamberton,et al.  Variational inequalities and the pricing of American options , 1990 .

[19]  G. Barone-Adesi,et al.  Efficient Analytic Approximation of American Option Values , 1987 .

[20]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[21]  H. Johnson,et al.  The American Put Option Valued Analytically , 1984 .

[22]  I. Karatzas,et al.  On the pricing of contingent claims under constraints , 1996 .

[23]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[24]  J. Barraquand,et al.  PRICING OF AMERICAN PATH‐DEPENDENT CONTINGENT CLAIMS , 1996 .

[25]  P. Glasserman,et al.  Pricing American-style securities using simulation , 1997 .

[26]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[27]  Yaacov Z. Bergman Option Pricing with Differential Interest Rates , 1995 .

[28]  S. Jacka Optimal Stopping and the American Put , 1991 .

[29]  Clifford W. Smith,et al.  Option pricing: A review , 1976 .

[30]  I. Karatzas Optimization problems in the theory of continuous trading , 1989 .

[31]  E. Jouini,et al.  ARBITRAGE IN SECURITIES MARKETS WITH SHORT-SALES CONSTRAINTS , 1995 .

[32]  D. Kramkov Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets , 1996 .

[33]  R. Myneni The Pricing of the American Option , 1992 .

[34]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[35]  P. Wilmott,et al.  Option pricing: Mathematical models and computation , 1994 .

[36]  P. Boyle A Lattice Framework for Option Pricing with Two State Variables , 1988, Journal of Financial and Quantitative Analysis.

[37]  J. Harrison,et al.  A stochastic calculus model of continuous trading: Complete markets , 1983 .

[38]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[39]  Alan G. White,et al.  The Use of the Control Variate Technique in Option Pricing , 1988, Journal of Financial and Quantitative Analysis.

[40]  H. P. Jr. Mackean,et al.  Appendix : A free boundary problem for the heat equation arising from a problem in mathematical economics , 1965 .

[41]  R. C. Merton,et al.  Continuous-Time Finance , 1990 .

[42]  A. Bensoussan On the theory of option pricing , 1984, Acta Applicandae Mathematicae.

[43]  R. Uppal,et al.  Leverage Constraints and the Optimal Hedging of Stock and Bond Options , 1994, Journal of Financial and Quantitative Analysis.

[44]  M. David HARRISON, J. Michael, and KREPS, . Martingales and Arbitrage in Multiperiod Securities Markets, Journal of Economic Theory, , . , 1979 .

[45]  Phelim P. Boyle,et al.  Advances in Futures and Options Research , 1996 .

[46]  A. G. Fakeev Optimal Stopping of a Markov Process , 1971 .

[47]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[48]  M. Broadie,et al.  American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods , 1996 .