Gluconate dehydratase from the promiscuous Entner–Doudoroff pathway in Sulfolobus solfataricus

[1]  W. D. de Vos,et al.  The unique features of glycolytic pathways in Archaea. , 2003, The Biochemical journal.

[2]  Narinder I. Heyer,et al.  Metabolic Pathway Promiscuity in the Archaeon Sulfolobus solfataricus Revealed by Studies on Glucose Dehydrogenase and 2-Keto-3-deoxygluconate Aldolase* , 2003, Journal of Biological Chemistry.

[3]  K. Corbett,et al.  Tailoring the substrate specificity of the β‐glycosidase from the thermophilic archaeon Sulfolobus solfataricus , 2001, FEBS letters.

[4]  P. Babbitt,et al.  Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. , 2001, Annual review of biochemistry.

[5]  A. Elshafei,et al.  Evidence for a non-phosphorylated route of galactose breakdown in cell-free extracts of Aspergillus niger. , 2001, Enzyme and microbial technology.

[6]  Mark A. Ragan,et al.  The complete genome of the crenarchaeon Sulfolobus solfataricus P2 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[7]  C. Sensen,et al.  Two different and highly organized mechanisms of translation initiation in the archaeon Sulfolobus solfataricus , 2000, Extremophiles.

[8]  D. Hough,et al.  An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates. , 1999, The Biochemical journal.

[9]  C. Sensen,et al.  Glucose Transport in the Extremely Thermoacidophilic Sulfolobus solfataricus Involves a High-Affinity Membrane-Integrated Binding Protein , 1999, Journal of bacteriology.

[10]  G. Petsko,et al.  Evolution of enzymatic activities in the enolase superfamily: Identification of a 'new' general acid catalyst in the active site of D- galactonate dehydratase from Escherichia coli , 1999 .

[11]  D. Herschlag,et al.  Catalytic promiscuity and the evolution of new enzymatic activities. , 1999, Chemistry & biology.

[12]  G. H. Reed,et al.  The enolase superfamily: a general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids. , 1996, Biochemistry.

[13]  G. Schäfer Bioenergetics of the archaebacterium Sulfolobus. , 1996, Biochimica et biophysica acta.

[14]  R. Hensel,et al.  Glucose catabolism of the hyperthermophilic archaeum Thermoproteus tenax , 1993 .

[15]  T. Conway,et al.  The Entner-Doudoroff pathway: history, physiology and molecular biology. , 1992, FEMS microbiology reviews.

[16]  D. Grogan Evidence that β-Galactosidase of Sulfolobus solfataricus Is Only One of Several Activities of a Thermostable β-d-Glycosidase , 1991 .

[17]  W. Zillig,et al.  Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[18]  A. Elshafei Degradation of Some Sugars and Sugar Acids by the Nonphosphorylated D-Gluconate Pathway in Aspergillus ustus , 1989, 1989.

[19]  D. Grogan,et al.  Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains , 1989, Journal of bacteriology.

[20]  M. Danson,et al.  Metabolism of glucose via a modified Entner‐Doudoroff pathway in the thermoacidophilic archaebacterium Thermoplasma acidophilum , 1986 .

[21]  M. de Rosa,et al.  Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. , 1984, The Biochemical journal.

[22]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[23]  A. Cornish-Bowden,et al.  The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. , 1974, The Biochemical journal.

[24]  M. Hassan,et al.  New Pathway for Nonphosphorylated Degradation of Gluconate by Aspergillus niger , 1973, Journal of bacteriology.

[25]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[26]  M. Doudoroff,et al.  The metabolism of D-galactose in Pseudomonas saccharophila. , 1957, The Journal of biological chemistry.

[27]  N. Entner,et al.  Glucose and gluconic acid oxidation of Pseudomonas saccharophila. , 1952, The Journal of biological chemistry.

[28]  K. Kersters,et al.  The occurrence of the Entner-Doudoroff pathway in bacteria , 2005, Antonie van Leeuwenhoek.