Partially polarized Gaussian Schell-model beams

We consider a class of beams that are both partially polarized and partially coherent from the spatial standpoint. They are characterized by a correlation matrix whose elements have the same form as the mutual intensity of a Gaussian Schell-model beam. We focus our attention on those beams that would appear identical to ordinary Gaussian Schell-model beams in a scalar treatment. After establishing some inequalities that limit the choice of the matrix parameters, we study the main effects of propagation. Starting from the source plane, in which the beam is assumed to be uniformly polarized, we find that in the course of propagation the degree of polarization generally becomes non-uniform across a typical section of the beam. Furthermore, we find that the intensity distribution at the output of an arbitrarily oriented linear polarizer is Gaussian shaped at the source plane whereas it can be quite different at other planes.

[1]  R M Osgood,et al.  Fabrication and evaluation of a freestanding pyroelectric detector made from single-crystal LiNbO(3) film. , 2000, Optics letters.

[2]  L. Videau,et al.  Propagation of a partially coherent beam under the interaction of small and large scales , 2000 .

[3]  C. Someda Far field of polarization gratings. , 1999, Optics letters.

[4]  R. Martínez-Herrero,et al.  Beam quality of partially polarized beams propagating through lenslike birefringent elements , 1999 .

[5]  J. Minabe,et al.  Holographic recording and retrieval of polarized light by use of polyester containing cyanoazobenzene units in the side chain. , 1999, Optics letters.

[6]  S. Seshadri Partially coherent Gaussian Schell-model electromagnetic beams , 1999 .

[7]  Franco Gori,et al.  The irradiance of partially polarized beams in a scalar treatment , 1999 .

[8]  F. Gori Measuring Stokes parameters by means of a polarization grating. , 1999, Optics letters.

[9]  R. Martínez-Herrero,et al.  Degree of polarization of non-uniformly partially polarized beams: a proposal , 1999 .

[10]  Paul Rochon,et al.  Polarization holographic gratings in azopolymers for detecting and producing circularly polarized light , 1998, Other Conferences.

[11]  Dennis G. Hall,et al.  Properties and diffraction of vector Bessel–Gauss beams , 1998 .

[12]  Anthony A. Tovar,et al.  Production and propagation of cylindrically polarized Laguerre–Gaussian laser beams , 1998 .

[13]  Franco Gori,et al.  Beam coherence-polarization matrix , 1998 .

[14]  D. Hall,et al.  High-order azimuthal spatial modes of concentric-circle-grating surface-emitting semiconductor lasers , 1998 .

[15]  J. Ferrari,et al.  Complex self-coherence function determination using geometric phase techniques , 1998 .

[16]  Rosario Martínez-Herrero,et al.  Parametric characterization of non-uniformly polarized beams , 1998 .

[17]  F. Gori,et al.  Partially coherent sources with helicoidal modes , 1998 .

[18]  F. Gori Matrix treatment for partially polarized, partially coherent beams. , 1998, Optics letters.

[19]  C. Palma,et al.  Coherence evolution of laser beams in cavities with variable-reflectivity mirrors , 1997 .

[20]  R. Martínez-Herrero,et al.  Spatial characterization of general partially polarized beams. , 1997, Optics letters.

[21]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[22]  Dario Ambrosini,et al.  Twisted Gaussian Schell-model Beams: A Superposition Model , 1994 .

[23]  C. Palma,et al.  Propagation of partially coherent beams in a periodic sequence of lenses and Gaussian apertures , 1994 .

[24]  A. Friberg,et al.  Interpretation and experimental demonstration of twisted Gaussian Schell-model beams , 1994 .

[25]  Daniel F. V. James,et al.  Change of polarization of light beams on propagation in free space , 1994 .

[26]  D. Hall,et al.  Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution. , 1994, Optics letters.

[27]  A. Friberg,et al.  Focusing of twisted gaussian Schell-model beams , 1994 .

[28]  T. Asakura,et al.  Equiambiguity-function ellipse of Gaussian Schell-model beams , 1994 .

[29]  S C Tidwell,et al.  Efficient radially polarized laser beam generation with a double interferometer. , 1993, Applied optics.

[30]  K. Sundar,et al.  Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum , 1993 .

[31]  K. Sundar,et al.  Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics , 1993 .

[32]  Bin Zhang,et al.  A simple method for estimating the number of effectively oscillating modes and weighting factors of mixed-mode laser beams behaving like gaussian Schell-model beams , 1993 .

[33]  Erik H. Anderson,et al.  Circularly symmetric operation of a concentric‐circle‐grating, surface‐ emitting, AlGaAs/GaAs quantum‐well semiconductor laser , 1992 .

[34]  J. Galán,et al.  Beam quality dependence on the coherence length of Gaussian Schell-model fields propagating through ABCD optical-systems , 1992 .

[35]  Rolf Gase,et al.  The Multimode Laser Radiation as a Gaussian Schell Model Beam , 1991 .

[36]  K. Nugent A generalization of Schell's theorem , 1990 .

[37]  S C Tidwell,et al.  Generating radially polarized beams interferometrically. , 1990, Applied optics.

[38]  Qingsheng He,et al.  Propagation and imaging experiments with Gaussian Schell-model beams , 1988 .

[39]  M. S. Zubairy,et al.  Second-order coherence properties of beams generated by a generalized Schell-model source , 1987 .

[40]  Avshalom Gamliel Radiation efficiency of planar Gaussian Schell-model sources , 1986 .

[41]  F. Gori,et al.  Mode propagation of the field generated by Collett-Wolf Schell-model sources , 1983 .

[42]  E. Wolf,et al.  Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields , 1982 .

[43]  R. Martínez-Herrero,et al.  Relation among planar sources that generate the same radiant intensity at the output of a general optical system , 1982 .

[44]  Ronald J. Sudol,et al.  Propagation parameters of gaussian Schell-model beams , 1982 .

[45]  E. Wolf New theory of partial coherence in the space–frequency domain. Part I: spectra and cross spectra of steady-state sources , 1982 .

[46]  F. Gori,et al.  Collett-Wolf sources and multimode lasers , 1980 .

[47]  B. Saleh Intensity distribution due to a partially coherent field and the Collett-Wolf equivalence theorem in the Fresnel zone , 1979 .

[48]  C. Palma,et al.  Partially coherent sources which give rise to highly directional light beams , 1978 .

[49]  John T. Foley,et al.  Directionality of Gaussian Schell-model beams (A) , 1978 .

[50]  E Collett,et al.  Is complete spatial coherence necessary for the generation of highly directional light beams? , 1978, Optics letters.

[51]  E. Wolf Coherence properties of partially polarized electromagnetic radiation , 1959 .

[52]  R. Castañeda,et al.  Schell-model beams and interference fields , 1997 .

[53]  D. Hall,et al.  Vector-beam solutions of Maxwell's wave equation. , 1996, Optics letters.

[54]  R. Simon,et al.  Twisted Gaussian Schell-model beams , 1993 .

[55]  Ari T. Friberg,et al.  Selected papers on coherence and radiometry , 1993 .

[56]  T. Tamir,et al.  Nonspecular phenomena in partly coherent beams reflected by multilayered structures , 1989 .

[57]  R. Azzam,et al.  Ellipsometry and polarized light : North Holland, Amsterdam, 1987 (ISBN 0-444-87016-4). xvii + 539 pp. Price Dfl. 75.00. , 1987 .