Diamagnetic susceptibility from a nonadiabatic path-integral simulation of few-electron systems

[1]  B. Militzer,et al.  Path integral Monte Carlo approach to the structural properties and collective excitations of liquid \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidema , 2022, Scientific Reports.

[2]  Charles W. Robson,et al.  Path integrals: From quantum mechanics to photonics , 2021, APL Photonics.

[3]  Michele Invernizzi,et al.  Attenuating the fermion sign problem in path integral Monte Carlo simulations using the Bogoliubov inequality and thermodynamic integration. , 2020, The Journal of chemical physics.

[4]  A. Alijah,et al.  The hydrogen molecule H2 in inclined configuration in a weak magnetic field , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[5]  I. Kylänpää,et al.  Computation of Dynamic Polarizabilities and van der Waals Coefficients from Path-Integral Monte Carlo. , 2018, Journal of chemical theory and computation.

[6]  M. Bonitz,et al.  Permutation blocking path integral Monte Carlo: a highly efficient approach to the simulation of strongly degenerate non-ideal fermions , 2015, 1504.03859.

[7]  M. Molski,et al.  Accurate non-Born–Oppenheimer calculations of the lowest vibrational energies of D2 and T2 with including relativistic corrections , 2010 .

[8]  Wolfgang Nolting,et al.  Quantum Theory of Magnetism , 2009 .

[9]  R. Coldwell,et al.  Fully nonadiabatic properties of all H2 isotopomers. , 2008, The Journal of chemical physics.

[10]  Juha Vaara,et al.  Theory and computation of nuclear magnetic resonance parameters. , 2007, Physical chemistry chemical physics : PCCP.

[11]  B. Gaveau,et al.  Path integral in a magnetic field using the Trotter product formula , 2004, quant-ph/0403019.

[12]  L. Adamowicz,et al.  Variational calculations of excited states with zero total angular momentum (vibrational spectrum) of H2 without use of the Born–Oppenheimer approximation , 2003 .

[13]  T. Rebane Nonadiabatic theory of diamagnetic susceptibility of molecules , 2002 .

[14]  F. Weinhold,et al.  Diamagnetism of helium , 2000 .

[15]  D. Ceperley,et al.  PATH INTEGRAL MONTE CARLO SIMULATIONS FOR FERMION SYSTEMS: PAIRING IN THE ELECTRON-HOLE PLASMA. , 1999, cond-mat/9909434.

[16]  M. C. Gordillo,et al.  A comparison of the efficiency of Fourier- and discrete time-path integral Monte Carlo , 1998 .

[17]  D. M. Bishop,et al.  Calculation of magnetic properties. VI. Electron correlated nuclear shielding constants and magnetizabilities for thirteen small molecules , 1997 .

[18]  L. Wolniewicz NONADIABATIC ENERGIES OF THE GROUND STATE OF THE HYDROGEN MOLECULE , 1995 .

[19]  J. Voitländer,et al.  The Magnetic Properties of the Hydrogen Molecule , 1969 .

[20]  R. Coldwell,et al.  Rovibrationally averaged properties of H2 using Monte Carlo methods , 2007 .

[21]  E. L. Pollock,et al.  Path-integral study of magnetic response: Excitonic and biexcitonic diamagnetism in semiconductor quantum dots , 1992 .

[22]  G. Wagnière The evaluation of three‐dimensional rotational averages , 1982 .

[23]  A. Davies,et al.  A note on the magnetic susceptibility of hydrogen and its isotopomers , 1974 .

[24]  R. Storer PATH-INTEGRAL CALCULATION OF THE QUANTUM-STATISTICAL DENSITY MATRIX FOR ATTRACTIVE COULOMB FORCES. , 1968 .