Heterogeneous combinatorial catalysis applied to oil refining, petrochemistry and fine chemistry

[1]  Estefania Argente,et al.  Application of artificial neural networks to high-throughput synthesis of zeolites , 2005 .

[2]  Estefania Argente,et al.  Optimisation of olefin epoxidation catalysts with the application of high-throughput and genetic algorithms assisted by artificial neural networks (softcomputing techniques) , 2005 .

[3]  J. M. Serra,et al.  High-throughput characterisation of materials by photoluminescence spectroscopy. , 2004, Chemistry.

[4]  Claude Mirodatos,et al.  The development of descriptors for solids: teaching "catalytic intuition" to a computer. , 2004, Angewandte Chemie.

[5]  Y. Okamoto Finding optimum compositions of catalysts using ab initio calculations and data mining , 2004 .

[6]  James F Blake,et al.  Integrating cheminformatic analysis in combinatorial chemistry. , 2004, Current opinion in chemical biology.

[7]  Suljo Linic,et al.  Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles , 2004 .

[8]  Daniel C. Weaver Applying data mining techniques to library design, lead generation and lead optimization. , 2004, Current opinion in chemical biology.

[9]  F. Schüth,et al.  Spatially resolving infrared spectroscopy for parallelized characterization of acid sites of catalysts via pyridine sorption: Possibilities and limitations , 2004 .

[10]  J. Hanak,et al.  A quantum leap in the development of new materials and devices , 2004 .

[11]  Krishna Rajan,et al.  Combinatorial design of semiconductor chemistry for bandgap engineering: “virtual” combinatorial experimentation , 2004 .

[12]  X. Xiang,et al.  High throughput synthesis and screening for functional materials , 2004 .

[13]  W. Maier,et al.  Strategies for the discovery of new catalysts with combinatorial chemistry , 2004 .

[14]  D. Lenoir,et al.  Cover Picture: Selective Adsorption of Polychlorinated Dibenzo‐p‐dioxins and Dibenzofurans by the Zeosils UTD‐1, SSZ‐24, and ITQ‐4 (Chem. Eur. J. 1/2004) , 2004 .

[15]  Anthony F. Volpe,et al.  Gas phase oxidation of ethane to acetic acid using high-throughput screening in a massively parallel microfluidic reactor system , 2003 .

[16]  Estefania Argente,et al.  Neural networks for modelling of kinetic reaction data applicable to catalyst scale up and process control and optimisation in the frame of combinatorial catalysis , 2003 .

[17]  Claude Mirodatos,et al.  How to Design Diverse Libraries of Solid Catalysts , 2003 .

[18]  J. M. Serra,et al.  Discovery of new paraffin isomerization catalysts based on SO42−/ZrO2 and WOx/ZrO2 applying combinatorial techniques , 2003 .

[19]  José M. Serra,et al.  Styrene from toluene by combinatorial catalysis , 2003 .

[20]  András Tompos,et al.  Holographic research strategy for catalyst library design: Description of a new powerful optimisation method , 2003 .

[21]  Yves Schuurman,et al.  Acceleration in catalyst development by fast transient kinetic investigation , 2003 .

[22]  Ron Dagani,et al.  FINDING CATALYSTS FASTER: Symyx-Dow collaboration yields new class of polyolefin catalysts , 2003 .

[23]  P. Jacobs,et al.  Development of a fixed-bed continuous-flow high-throughput reactor for long-chain n-alkane hydroconversion , 2003 .

[24]  Vince Murphy,et al.  A fully integrated high-throughput screening methodology for the discovery of new polyolefin catalysts: discovery of a new class of high temperature single-site group (IV) copolymerization catalysts. , 2003, Journal of the American Chemical Society.

[25]  José M. Serra,et al.  Development of a low temperature light paraffin isomerization catalysts with improved resistance to water and sulphur by combinatorial methods , 2003 .

[26]  J. M. Serra,et al.  Application of artificial neural networks to combinatorial catalysis: modeling and predicting ODHE catalysts. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[27]  Selim Senkan,et al.  Discovery of new fuel-lean NO reduction catalyst leads using combinatorial methodologies , 2002 .

[28]  Thomas E Mallouk,et al.  Split-pool method for synthesis of solid-state material combinatorial libraries. , 2002, Journal of combinatorial chemistry.

[29]  Francisco J. Urbano,et al.  An Approach to the Construction of Indexed Libraries for the Combinatorial Selection of Heterogeneous Catalysts , 2002 .

[30]  Guanghua Li,et al.  Combinatorial approach for the hydrothermal syntheses of open-framework zinc phosphates. , 2002, Chemical communications.

[31]  Thomas Maschmeyer,et al.  High-speed experimentation techniques applied to the study of the synthesis of zeolites and silsesquioxanes , 2002 .

[32]  Olivier Lavastre,et al.  Discovery of new fluorescent materials from fast synthesis and screening of conjugated polymers. , 2002, Journal of the American Chemical Society.

[33]  Sohrab Rohani,et al.  Identification and control of a riser-type FCC unit using neural networks , 2002 .

[34]  Anthony F. Volpe,et al.  Applications of combinatorial methods in catalysis , 2001 .

[35]  Arne Karlsson,et al.  Combinatorial chemistry – The emperor's new clothes? , 2001 .

[36]  Wolfram Stichert,et al.  High throughput experimentation for the synthesis of new crystalline microporous solids , 2001 .

[37]  J Honerkamp,et al.  High-throughput evaluation of olefin copolymer composition by means of attenuated total reflection Fourier tranform infrared spectroscopy. , 2001, Journal of combinatorial chemistry.

[38]  Huang Kai,et al.  Artificial neural network-aided design of a multi-component catalyst for methane oxidative coupling , 2001 .

[39]  K Wang,et al.  Construction of a generic reaction knowledge base by reaction data mining. , 2001, Journal of molecular graphics & modelling.

[40]  P Willett,et al.  Visual and computational analysis of structure--activity relationships in high-throughput screening data. , 2001, Current opinion in chemical biology.

[41]  Ferdi Schüth,et al.  A Multipurpose Parallelized 49-Channel Reactor for the Screening of Catalysts: Methane Oxidation as the Example Reaction , 2001 .

[42]  Selim Senkan,et al.  Combinatorial Heterogeneous Catalysis-A New Path in an Old Field. , 2001, Angewandte Chemie.

[43]  H. García,et al.  Photoluminescence of supported vanadia catalysts: linear correlation between the vanadyl emission wavelength and the isoelectric point of the oxide support , 2000 .

[44]  A. Corma,et al.  Observation of a 390-nm Emission Band Associated with Framework Ti in Mesoporous Titanosilicates , 2000 .

[45]  Manfred Baerns,et al.  An evolutionary approach in the combinatorial selection and optimization of catalytic materials , 2000 .

[46]  P. Seneci,et al.  Application of Combinatorial Technologies for Catalyst Design and Development , 2000 .

[47]  M. Baerns,et al.  Parallel synthesis and fast screening of heterogeneous catalysts , 2000 .

[48]  Freek Kapteijn,et al.  The six-flow reactor technology: A review on fast catalyst screening and kinetic studies , 2000 .

[49]  Zengin,et al.  High-Throughput Testing of Heterogeneous Catalyst Libraries Using Array Microreactors and Mass Spectrometry. , 1999, Angewandte Chemie.

[50]  Jandeleit,et al.  Combinatorial Materials Science and Catalysis. , 1999, Angewandte Chemie.

[51]  M. Snapper,et al.  Combinatorial catalyst discovery. , 1999, Current opinion in chemical biology.

[52]  S. Senkan,et al.  Discovery and Optimization of Heterogeneous Catalysts by Using Combinatorial Chemistry. , 1999, Angewandte Chemie.

[53]  W. H. Weinberg,et al.  High-Throughput Synthesis and Screening of Combinatorial Heterogeneous Catalyst Libraries. , 1999, Angewandte Chemie.

[54]  Hans-Werner Schmidt,et al.  Combinatorial Material Libraries on the Microgram Scale with an Example of Hydrothermal Synthesis. , 1998, Angewandte Chemie.

[55]  Hans-Werner Schmidt,et al.  Detection of Catalytic Activity in Combinatorial Libraries of Heterogeneous Catalysts by IR Thermography. , 1998, Angewandte Chemie.

[56]  Manfred T Reetz,et al.  Time-Resolved IR-Thermographic Detection and Screening of Enantioselectivity in Catalytic Reactions. , 1998, Angewandte Chemie.

[57]  Gheorghi P. Vissokov,et al.  Experimental studies on the plasma-chemical synthesis of a catalyst for natural gas reforming , 1998 .

[58]  Arne Karlsson,et al.  Combinatorial Approach to the Hydrothermal Synthesis of Zeolites. , 1998, Angewandte Chemie.

[59]  Xiaoqun Wu,et al.  Artificial neural network aided design of catalyst for propane ammoxidation , 1997 .

[60]  Dan Luss,et al.  Infrared Thermographic Screening of Combinatorial Libraries of Heterogeneous Catalysts , 1996 .

[61]  Masatoshi Nagai,et al.  CVD Synthesis of Alumina-supported Molybdenum Carbide Catalyst , 1996 .

[62]  Naonobu Katada,et al.  Silica Monolayer Solid‐Acid Catalyst Prepared by CVD , 1996 .

[63]  Andre A. Gorbunov,et al.  Ultrathin film deposition by pulsed laser ablation using crossed beams , 1996 .

[64]  Peter G. Schultz,et al.  A Combinatorial Approach to Materials Discovery , 1995, Science.

[65]  Tadashi Hattori,et al.  Neural network as a tool for catalyst development , 1995 .

[66]  E. Wolf,et al.  In-situ IR thermography studies of reaction dynamics during CO oxidation on Rh-SiO2 catalysts , 1991 .

[67]  Zhongmin Liu,et al.  High-throughput characterization of heterogeneous catalysts by temperature-programmed analysis method , 2004 .

[68]  Jens Scheidtmann,et al.  2 Plattenbau-automated synthesis of catalysts and materials libraries , 2003 .

[69]  Avelino Corma,et al.  Application Of Genetic Algorithms To The Development And Optimisation Of Light Paraffin Isomerisation Catalysts , 2002 .

[70]  Valentin Parmon,et al.  Principles and methods for accelerated catalyst design and testing , 2002 .

[71]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[72]  E. Wolf,et al.  Infrared thermography and FTIR studies of catalyst preparation effects on surface reaction dynamics during CO and ethylene oxidation on Rh/SiO2 catalysts , 1990 .

[73]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .