Rainbow Sets in the Intersection of Two Matroids

Abstract Given sets F 1 , … , F n , a partial rainbow set is the range of a partial choice function, where if the same element x is chosen from k different F i ʼs it is considered as repeating k times. Aharoni and Berger [R. Aharoni and E. Berger, unpublished] conjectured that if M and N are matroids on the same ground set, and F 1 , … , F n are sets of size n belonging to M ∩ N , then there exists a rainbow set of size n − 1 belonging to M ∩ N . Following an idea of Woolbright and Brower-de Vries-Wieringa, we prove that there exists such a rainbow set of size at least n − n .

[1]  Daniel Kotlar,et al.  On the Length of a Partial Independent Transversal in a Matroidal Latin Square , 2012, Electron. J. Comb..

[2]  D. Norton,et al.  Groups of orthogonal row-latin squares. , 1952 .

[3]  Glenn G. Chappell A Matroid Generalization of a Result on Row-Latin Rectangles , 1999, J. Comb. Theory, Ser. A.

[4]  Andries E. Brouwer,et al.  A lower bound for the length of partial transversals in a latin square , 1978 .

[5]  Ron Aharoni,et al.  Rainbow Matchings in r-Partite r-Graphs , 2009, Electron. J. Comb..

[6]  Alexandr V. Kostochka,et al.  Large Rainbow Matchings in Edge-Coloured Graphs , 2012, Comb. Probab. Comput..

[7]  Andras Gyarfas,et al.  Rainbow matchings and partial transversals of Latin squares , 2012 .

[8]  Guanghui Wang,et al.  Heterochromatic Matchings in Edge-Colored Graphs , 2008, Electron. J. Comb..

[9]  Ian M. Wanless,et al.  Surveys in Combinatorics 2011: Transversals in latin squares: a survey , 2011 .

[10]  Shinya Fujita,et al.  A Rainbow k-Matching in the Complete Graph with r Colors , 2009, Electron. J. Comb..

[11]  Douglas B. West,et al.  Rainbow Matching in Edge-Colored Graphs , 2010, Electron. J. Comb..

[12]  David E. Woolbright An n x n Latin Square Has a Transversal with at Least n - square root of n Distinct Symbols , 1978, J. Comb. Theory, Ser. A.

[13]  Pooya Hatami,et al.  A lower bound for the length of a partial transversal in a Latin square , 2008, J. Comb. Theory, Ser. A.

[14]  S. Stein TRANSVERSALS OF LATIN SQUARES AND THEIR GENERALIZATIONS , 1975 .

[15]  Guanghui Wang Rainbow Matchings in Properly Edge Colored Graphs , 2011, Electron. J. Comb..