Rainbow Sets in the Intersection of Two Matroids
暂无分享,去创建一个
[1] Daniel Kotlar,et al. On the Length of a Partial Independent Transversal in a Matroidal Latin Square , 2012, Electron. J. Comb..
[2] D. Norton,et al. Groups of orthogonal row-latin squares. , 1952 .
[3] Glenn G. Chappell. A Matroid Generalization of a Result on Row-Latin Rectangles , 1999, J. Comb. Theory, Ser. A.
[4] Andries E. Brouwer,et al. A lower bound for the length of partial transversals in a latin square , 1978 .
[5] Ron Aharoni,et al. Rainbow Matchings in r-Partite r-Graphs , 2009, Electron. J. Comb..
[6] Alexandr V. Kostochka,et al. Large Rainbow Matchings in Edge-Coloured Graphs , 2012, Comb. Probab. Comput..
[7] Andras Gyarfas,et al. Rainbow matchings and partial transversals of Latin squares , 2012 .
[8] Guanghui Wang,et al. Heterochromatic Matchings in Edge-Colored Graphs , 2008, Electron. J. Comb..
[9] Ian M. Wanless,et al. Surveys in Combinatorics 2011: Transversals in latin squares: a survey , 2011 .
[10] Shinya Fujita,et al. A Rainbow k-Matching in the Complete Graph with r Colors , 2009, Electron. J. Comb..
[11] Douglas B. West,et al. Rainbow Matching in Edge-Colored Graphs , 2010, Electron. J. Comb..
[12] David E. Woolbright. An n x n Latin Square Has a Transversal with at Least n - square root of n Distinct Symbols , 1978, J. Comb. Theory, Ser. A.
[13] Pooya Hatami,et al. A lower bound for the length of a partial transversal in a Latin square , 2008, J. Comb. Theory, Ser. A.
[14] S. Stein. TRANSVERSALS OF LATIN SQUARES AND THEIR GENERALIZATIONS , 1975 .
[15] Guanghui Wang. Rainbow Matchings in Properly Edge Colored Graphs , 2011, Electron. J. Comb..