Domain equations for probabilistic processes

In this paper we consider Milner's calculus CCS enriched by a probabilistic choice operator. The calculus is given operational semantics based on probabilistic transition systems. We define operational notions of preorder and equivalence as probabilistic extensions of the simulation preorder and the bisimulation equivalence respectively. We extend existing category-theoretic techniques for solving domain equations to the probabilistic case and give two denotational semantics for the calculus. The first, ‘smooth’, semantic model arises as a solution of a domain equation involving the probabilistic powerdomain and solved in the category CONT⊥ of continuous domains. The second model also involves an appropriately restricted probabilistic powerdomain, but is constructed in the category CUM of complete ultra-metric spaces, and hence is necessarily ‘discrete’. We show that the domain-theoretic semantics is fully abstract with respect to the simulation preorder, and that the metric semantics is fully abstract with respect to bisimulation.

[1]  G. Norman METRIC SEMANTICS FOR REACTIVE PROBABILISTIC PROCESSES , 1998 .

[2]  Marta Z. Kwiatkowska,et al.  A Fully Abstract Metric-Space Denotational Semantics for Reactive Probabilistic Processes , 1997, COMPROX.

[3]  Christel Baier,et al.  How to Interpret and Establish Consistency Results for Semantics of Concurrent Programming Languages , 1997, Fundam. Informaticae.

[4]  Erik P. de Vink,et al.  Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach , 1997, Theor. Comput. Sci..

[5]  Gordon D. Plotkin,et al.  Towards a mathematical operational semantics , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[6]  Christel Baier,et al.  Trees and Semantics , 1997, Theor. Comput. Sci..

[7]  Abbas Edalat,et al.  Bisimulation for labelled Markov processes , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[8]  Reinhold Heckmann,et al.  Spaces of Valuations , 1996 .

[9]  Marta Z. Kwiatkowska,et al.  Probabilistic Metric Semantics for a Simple Language with Recursion , 1996, MFCS.

[10]  Bernhard Steffen,et al.  Reactive, Generative and Stratified Models of Probabilistic Processes , 1995, Inf. Comput..

[11]  Mihalis Yannakakis,et al.  The complexity of probabilistic verification , 1995, JACM.

[12]  Wang Yi,et al.  Compositional testing preorders for probabilistic processes , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[13]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[14]  Christel Baier,et al.  Denotational Semantics in the CPO and Metric Approach , 1994, Theor. Comput. Sci..

[15]  Wang Yi,et al.  Algebraic Reasoning for Real-Time Probabilistic Processes with Uncertain Information , 1994, FTRTFT.

[16]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[17]  Rance Cleaveland,et al.  Fully Abstract Characterizations of Testing Preorders for Probabilistic Processes , 1994, CONCUR.

[18]  L. M. Brown,et al.  Summer Conference on General Topology and Applications (10th) Held in Amsterdam on 15-18 August 1994 , 1994 .

[19]  Gavin Lowe,et al.  Probabilities and priorities in timed CSP , 1993 .

[20]  Rance Cleaveland,et al.  Testing Preorders for Probabilistic Processes , 1992, Inf. Comput..

[21]  Wang Yi,et al.  Testing Probabilistic and Nondeterministic Processes , 1992, PSTV.

[22]  Jan J. M. M. Rutten,et al.  On the Foundation of Final Semantics: Non-Standard Sets, Metric Spaces, Partial Orders , 1992, REX Workshop.

[23]  Samson Abramsky,et al.  Handbook of logic in computer science. , 1992 .

[24]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[25]  Kim Guldstrand Larsen,et al.  Specification and refinement of probabilistic processes , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[26]  Samson Abramsky,et al.  A Domain Equation for Bisimulation , 1991, Inf. Comput..

[27]  Mila E. Majster-Cederbaum,et al.  Towards a Foundation for Semantics in Complete Metric Spaces , 1991, Inf. Comput..

[28]  Bengt Jonsson,et al.  A calculus for communicating systems with time and probabilities , 1990, [1990] Proceedings 11th Real-Time Systems Symposium.

[29]  Scott A. Smolka,et al.  Equivalences, Congruences, and Complete Axiomatizations for Probabilistic Processes , 1990, CONCUR.

[30]  Ivan Christoff,et al.  Testing Equivalences and Fully Abstract Models for Probabilistic Processes , 1990, CONCUR.

[31]  Bernhard Steffen,et al.  Reactive, generative, and stratified models of probabilistic processes , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[32]  Scott A. Smolka,et al.  Algebraic Reasoning for Probabilistic Concurrent Systems , 1990, Programming Concepts and Methods.

[33]  Claire Jones,et al.  Probabilistic non-determinism , 1990 .

[34]  Mila E. Majster-Cederbaum,et al.  The Contraction Property is Sufficient to Guarantee the Uniqueness of Fixed Points of Endofunctors in a Category of Complete Metric Spaces , 1989, Inf. Process. Lett..

[35]  C. Jones,et al.  A probabilistic powerdomain of evaluations , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[36]  Pierre America,et al.  Solving Reflexive Domain Equations in a Category of Complete Metric Spaces , 1987, J. Comput. Syst. Sci..

[37]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[38]  Mila E. Majster-Cederbaum,et al.  On the Uniqueness of Fixed Points of Endofunctors in a Category of Complete Metric Spaces , 1988, Inf. Process. Lett..

[39]  John-Jules Ch. Meyer,et al.  Metric semantics for concurrency , 1988, BIT.

[40]  Moshe Y. Vardi Automatic verification of probabilistic concurrent finite state programs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[41]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..

[42]  William C. Rounds,et al.  Connections Between Two Theories of Concurrency: Metric Spaces and Synchronization Trees , 1983, Inf. Control..

[43]  Glynn Winskel,et al.  Synchronisation Trees , 1983, ICALP.

[44]  Robin Milner,et al.  Calculi for Synchrony and Asynchrony , 1983, Theor. Comput. Sci..

[45]  J. W. de Bakker,et al.  Processes and the Denotational Semantics of Concurrency , 1982, Inf. Control..

[46]  Joseph E. Stoy,et al.  Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory , 1981 .

[47]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[48]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[49]  Gordon D. Plotkin,et al.  The category-theoretic solution of recursive domain equations , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[50]  C. Kuratowski,et al.  Sur une méthode de métrisation complète de certains espaces d'ensembles compacts , 1956 .