Possible Solutions to the Radius Anomalies of Transiting Giant Planets

We calculate the theoretical evolution of the radii of all 14 of the known transiting extrasolar giant planets (EGPs) for a variety of assumptions concerning atmospheric opacity, dense inner core masses, and possible internal power sources. We incorporate the effects of stellar irradiation and customize such effects for each EGP and star. Looking collectively at the family as a whole, we find that there are in fact two radius anomalies to be explained. Not only are the radii of a subset of the known transiting EGPs larger than expected from previous theory, but many of the other objects are smaller than the default theory would allow. We suggest that the larger EGPs can be explained by invoking enhanced atmospheric opacities that naturally retain internal heat. This explanation might obviate the necessity for an extra internal power source. We explain the smaller radii by the presence in perhaps all the known transiting EGPs of dense cores, such as have been inferred for Saturn and Jupiter. Importantly, we derive a rough correlation between the masses of our "best-fit" cores and the stellar metallicity that seems to buttress the core-accretion model of their formation. Although many caveats and uncertainties remain, the resulting comprehensive theory that incorporates enhanced-opacity atmospheres and dense cores is in reasonable accord with all the current structural data for the known transiting giant planets.

[1]  J. E. Stys,et al.  A Transiting Planet of a Sun-like Star , 2006 .

[2]  Chemical abundances for the transiting planet host stars OGLE-TR-10, 56, 111, 113, 132, and TrES-1. Abundances in different galactic populations , 2006, astro-ph/0606758.

[3]  David Charbonneau,et al.  TrES-1: The Transiting Planet of a Bright K0 V Star , 2004 .

[4]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.

[5]  David Charbonneau,et al.  Transit Photometry of the Core-dominated Planet HD 149026b , 2005 .

[6]  J. Valenti,et al.  The Planet-Metallicity Correlation , 2005 .

[7]  Tristan Guillot,et al.  Astronomy and Astrophysics Evolution of " 51 Peg B-like " Planets , 2001 .

[8]  Alan P. Boss,et al.  Giant Planet Formation by Gravitational Instability , 1997 .

[9]  On the surface heating of synchronously spinning short-period jovian planets , 2003, astro-ph/0312476.

[10]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[11]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[12]  A. Burrows,et al.  THEORETICAL RADII OF TRANSITING GIANT PLANETS: THE CASE OF OGLE-TR-56b , 2004, astro-ph/0405264.

[13]  Debra A. Fischer,et al.  A Comparison of Observationally Determined Radii with Theoretical Radius Predictions for Short-Period Transiting Extrasolar Planets , 2005 .

[14]  Drake Deming,et al.  The Phase-Dependent Infrared Brightness of the Extrasolar Planet ʊ Andromedae b , 2006, Science.

[15]  Hansen,et al.  Migrating planets , 1998, Science.

[16]  F. Allard,et al.  The Evolution of Irradiated Planets: Application to Transits , 2004, astro-ph/0401487.

[17]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[18]  N. C. Santos,et al.  Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation , 2003 .

[19]  M. Holman,et al.  Accepted for publication in the Astrophysical Journal Letters Obliquity Tides on Hot Jupiters , 2005 .

[20]  Nicolas Grevesse,et al.  The Solar Chemical Composition , 2005 .

[21]  The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core , 2005, astro-ph/0507009.

[22]  Michel Mayor,et al.  ELODIE metallicity-biased search for transiting Hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733 , 2005 .

[23]  D. Queloz,et al.  Two new “very hot Jupiters” among the OGLE transiting candidates , 2004 .

[24]  M. Holman,et al.  The Transit Light Curve Project. III. Tres Transits of TrES-1 , 2006, astro-ph/0611404.

[25]  David Charbonneau,et al.  Using Stellar Limb-Darkening to Refine the Properties of HD 209458b , 2006, astro-ph/0603542.

[26]  G. Laughlin,et al.  On the Radii of Extrasolar Giant Planets , 2003 .

[27]  David Charbonneau,et al.  PRECISE RADIUS ESTIMATES FOR THE EXOPLANETS WASP-1b AND WASP-2b , 2007 .

[28]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[29]  The transit light curve project. IV. five transits of the exoplanet OGLE-TR-10B , 2005, astro-ph/0506569.

[30]  Carnegie,et al.  HAT-P-1b: A Large-Radius, Low-Density Exoplanet Transiting One Member of a Stellar Binary* ** , 2007 .

[31]  Alan P. Boss,et al.  Gas Giant Protoplanet Formation: Disk Instability Models with Thermodynamics and Radiative Transfer , 2001 .

[32]  William B. Hubbard,et al.  A Theory for the Radius of the Transiting Giant Planet HD 209458b , 2003, astro-ph/0305277.

[33]  D. Saumon,et al.  Atmosphere, Interior, and Evolution of the Metal-rich Transiting Planet HD 149026b , 2006 .

[34]  A. Ingersoll,et al.  Solar heating and internal heat flow on Jupiter , 1978 .

[35]  Marley,et al.  On the Radii of Close-in Giant Planets , 2000, The Astrophysical journal.

[36]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[37]  Lunar,et al.  Refined Parameters of the Planet Orbiting HD 189733 , 2006, astro-ph/0603291.

[38]  Peter Bodenheimer,et al.  On the Tidal Inflation of Short-Period Extrasolar Planets , 2001 .

[39]  A. Ingersoll Pioneer 10 and 11 observations and the dynamics of Jupiter's atmosphere , 1976 .

[40]  Ignasi Ribas,et al.  A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars , 2006, astro-ph/0605751.

[41]  D. SaumonT. Guillot Shock Compression of Deuterium and the Interiors of Jupiter and Saturn , 2004 .

[42]  C. Moutou,et al.  High accuracy transit photometry of the planet OGLE-TR-113b with a new deconvolution-based method , 2006 .

[43]  P. J. Schinder,et al.  Temperatures, Winds, and Composition in the Saturnian System , 2005, Science.

[44]  Sara Seager,et al.  The Changing Face of the Extrasolar Giant Planet HD 209458b , 2002, astro-ph/0209227.

[45]  Ivan Hubeny,et al.  Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method , 1995 .

[46]  A. Burrows,et al.  On the Indirect Detection of Sodium in the Atmosphere of the Planetary Companion to HD 209458 , 2002, astro-ph/0208263.

[47]  The Transit Light Curve Project. II. Two Transits of the Exoplanet OGLE-TR-111b , 2006, astro-ph/0609471.

[48]  Saurabh Jha,et al.  A Transiting Extrasolar Giant Planet around the Star OGLE-TR-10 , 2004 .

[49]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[50]  David Charbonneau,et al.  The transit light curve project. I. Four consecutive transits of the exoplanet XO-1b , 2006 .

[51]  High resolution spectroscopy of stars with transiting planets. The cases of OGLE-TR-10, 56, 111, 113, and TrES-1 , 2006, astro-ph/0601024.

[52]  Accurate radius and mass of the transiting exoplanet OGLE-TR-132b , 2004, astro-ph/0407635.

[53]  P. H. Hauschildt,et al.  Hot-Jupiters and hot-Neptunes: A common origin? , 2005 .

[54]  Sara Seager,et al.  “Weather” Variability of Close-in Extrasolar Giant Planets , 2002, astro-ph/0210499.

[55]  David Charbonneau,et al.  TrES-2: The First Transiting Planet in the Kepler Field , 2006, astro-ph/0609335.

[56]  Michael H. Wong,et al.  Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets , 2003 .