A local space-time discontinuous finite element method

[1]  T. Belytschko,et al.  An Eulerian–Lagrangian method for fluid–structure interaction based on level sets , 2006 .

[2]  Ted Belytschko,et al.  Arbitrary discontinuities in space–time finite elements by level sets and X‐FEM , 2004 .

[3]  T. Belytschko,et al.  An enriched finite element method and level sets for axisymmetric two‐phase flow with surface tension , 2003 .

[4]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[5]  I. Babuska,et al.  Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids , 2003 .

[6]  T. Belytschko,et al.  On the construction of blending elements for local partition of unity enriched finite elements , 2003 .

[7]  Ted Belytschko,et al.  An extended finite element method with higher-order elements for curved cracks , 2003 .

[8]  Bhushan Lal Karihaloo,et al.  Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the art review , 2003 .

[9]  David L. Chopp,et al.  A hybrid extended finite element/level set method for modeling phase transformations , 2002 .

[10]  John E. Dolbow,et al.  Solving thermal and phase change problems with the eXtended finite element method , 2002 .

[11]  T. Belytschko,et al.  The extended finite element method (XFEM) for solidification problems , 2002 .

[12]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[13]  Tariq D. Aslam,et al.  A level-set algorithm for tracking discontinuities in hyperbolic conservation laws , 2001 .

[14]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[15]  Ted Belytschko,et al.  Modeling fracture in Mindlin–Reissner plates with the extended finite element method , 2000 .

[16]  Ted Belytschko,et al.  Discontinuous enrichment in finite elements with a partition of unity method , 2000 .

[17]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[18]  Robert Haimes,et al.  Shock detection from computational fluid dynamics results , 1999 .

[19]  T. Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[20]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[21]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[22]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[23]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[24]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[25]  Hans-Georg Pagendarm,et al.  Feature detection from vector quantities in a numerically simulated hypersonic flow field in combination with experimental flow visualization , 1994, Proceedings Visualization '94.

[26]  Peter Hansbo,et al.  Explicit streamline diffusion finite element methods for the compressible Euler equations in conservation variables , 1993 .

[27]  De-kang Mao,et al.  A treatment of discontinuities for finite difference methods in the two-dimensional case , 1993 .

[28]  Thomas J. R. Hughes,et al.  Space-time finite element methods for second-order hyperbolic equations , 1990 .

[29]  F. B. Ellerby,et al.  Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.

[30]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[31]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[32]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[33]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[34]  W. L. Wood,et al.  A unified set of single step algorithms. Part 1: General formulation and applications , 1984 .

[35]  W. L. Wood A further look at Newmark, Houbolt, etc., time-stepping formulae , 1984 .

[36]  J. M. Kennedy,et al.  Application of mesh partitions of explicit-implicit integration to reactor safety problems , 1976 .

[37]  T. Belytschko,et al.  An Extended Finite Element Method for Two-Phase Fluids , 2003 .

[38]  Patrizia Palamidese,et al.  Scientific visualization : advanced software techniques , 1993 .

[39]  Hans-Georg Pagendarm,et al.  An Algorithm for Detection and Visualization of Discontinuities in Scientific Data Fields Applied to Flow Data with Shock Waves , 1992 .

[40]  T. Belytschko,et al.  Stability of explicit‐implicit mesh partitions in time integration , 1978 .