Folding a nonbiological polymer into a compact multihelical structure.

The only molecules that are currently known to fold into unique three-dimensional conformations and perform sophisticated functions are biological polymers - proteins and some RNA molecules. Our aim is to create a nonbiological sequence-specific polymer that folds in aqueous solution. Toward that end, we synthesized sequence-specific 30mer, 45mer, and 60mer peptoid oligomers (N-substituted glycine polymers) consisting of 15mer units we chained together by disulfide and oxime linkages to mimic the helical bundle structures commonly found in proteins. Because these 15mer sequences were previously shown to form defined helical structures that aggregate together at submillimolar concentrations, we expected that by covalently linking multiple 15mers together, they might fold as helical bundles. To probe whether they folded, we used fluorescence resonance energy transfer (FRET) reporter groups. We found that certain constructs fold up with a hydrophobic core and have cooperative folding transitions. Such molecules may ultimately provide a platform for designing specific functions resembling those of proteins.