Hyperspectral and Lidar Data Applied to the Urban Land Cover Machine Learning and Neural-Network-Based Classification: A Review

Rapid technological advances in airborne hyperspectral and lidar systems paved the way for using machine learning algorithms to map urban environments. Both hyperspectral and lidar systems can discriminate among many significant urban structures and materials properties, which are not recognizable by applying conventional RGB cameras. In most recent years, the fusion of hyperspectral and lidar sensors has overcome challenges related to the limits of active and passive remote sensing systems, providing promising results in urban land cover classification. This paper presents principles and key features for airborne hyperspectral imaging, lidar, and the fusion of those, as well as applications of these for urban land cover classification. In addition, machine learning and deep learning classification algorithms suitable for classifying individual urban classes such as buildings, vegetation, and roads have been reviewed, focusing on extracted features critical for classification of urban surfaces, transferability, dimensionality, and computational expense.

[1]  Qian Du,et al.  Weighted-Fusion-Based Representation Classifiers for Hyperspectral Imagery , 2015, Remote. Sens..

[2]  M. Schaepman,et al.  Fusion of imaging spectroscopy and airborne laser scanning data for characterization of forest ecosystems – A review , 2014 .

[3]  Y-Lan Boureau,et al.  Learning Convolutional Feature Hierarchies for Visual Recognition , 2010, NIPS.

[4]  Chang-Hong Lin,et al.  Lane-mark extraction for automobiles under complex conditions , 2014, Pattern Recognit..

[5]  Selim Aksoy,et al.  Spatial Techniques for Image Classification , 2006 .

[6]  B. Forster Coefficient of variation as a measure of urban spatial attributes, using SPOT HRV and Landsat TM data , 1993 .

[7]  D. Roberts,et al.  Urban tree species mapping using hyperspectral and lidar data fusion , 2014 .

[8]  Lorenzo Bruzzone,et al.  Extended profiles with morphological attribute filters for the analysis of hyperspectral data , 2010 .

[9]  Tingkui Mu,et al.  Multiscale Information Fusion for Hyperspectral Image Classification Based on Hybrid 2D-3D CNN , 2021, Remote. Sens..

[10]  Ahmed El-Rabbany,et al.  Multispectral LiDAR Data for Land Cover Classification of Urban Areas , 2017, Sensors.

[11]  Sergio Benini,et al.  Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review , 2019, J. Imaging.

[12]  Antonio Plaza,et al.  A new deep convolutional neural network for fast hyperspectral image classification , 2017, ISPRS Journal of Photogrammetry and Remote Sensing.

[13]  Jon Yngve Hardeberg,et al.  Evaluation of the Data Quality from a Round-Robin Test of Hyperspectral Imaging Systems , 2020, Sensors.

[14]  K. C. Tiwari,et al.  New spectral indices for detection of urban built-up surfaces and its sub-classes in AVIRIS-NG hyperspectral imagery , 2020, Geocarto International.

[15]  Pierre Comon,et al.  Hyperspectral Image Classification Based on Mathematical Morphology and Tensor Decomposition , 2020, Math. Morphol. Theory Appl..

[16]  Ryan R. Jensen,et al.  Best Practices for Urban Hyperspectral Remote Sensing Data Acquisition and Processing , 2016 .

[17]  Austin Troy,et al.  Object-based Land Cover Classification and Change Analysis in the Baltimore Metropolitan Area Using Multitemporal High Resolution Remote Sensing Data , 2008, Sensors.

[18]  Roger,et al.  Spectroscopy of Rocks and Minerals , and Principles of Spectroscopy , 2002 .

[19]  Liangpei Zhang,et al.  Fusion of Hyperspectral and LiDAR Data for Classification of Cloud-Shadow Mixed Remote Sensed Scene , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[20]  N. Pfeifer,et al.  Correction of laser scanning intensity data: Data and model-driven approaches , 2007 .

[21]  Teemu Hakala,et al.  Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification , 2011 .

[22]  Doreen S. Boyd,et al.  Mapping Complex Urban Land Cover from Spaceborne Imagery: The Influence of Spatial Resolution, Spectral Band Set and Classification Approach , 2016, Remote. Sens..

[23]  José Manuel Amigo,et al.  Pre-processing of hyperspectral images. Essential steps before image analysis , 2012 .

[24]  Andreas Schenk,et al.  KLUM: An Urban VNIR and SWIR Spectral Library Consisting of Building Materials , 2019, Remote. Sens..

[25]  Uwe Stilla,et al.  Iterative processing of laser scanning data by full waveform analysis , 2008 .

[26]  Uwe Soergel,et al.  Review of Radar Remote Sensing on Urban Areas , 2010 .

[27]  Mercedes Eugenia Paoletti,et al.  Deep learning classifiers for hyperspectral imaging: A review , 2019 .

[28]  K. Tansey,et al.  Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas , 2010 .

[29]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[30]  Prabukumar Manoharan,et al.  CNN based hyperspectral image classification using unsupervised band selection and structure-preserving spatial features , 2020 .

[31]  Jianyu Yang,et al.  Multisource Hyperspectral and LiDAR Data Fusion for Urban Land-Use Mapping based on a Modified Two-Branch Convolutional Neural Network , 2019, ISPRS Int. J. Geo Inf..

[32]  Luigi Fregonese,et al.  Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors , 2018 .

[33]  Boris Jutzi,et al.  Segmentation of tree regions using data of a full-waveform laser , 2007 .

[34]  Honglak Lee,et al.  Sparse deep belief net model for visual area V2 , 2007, NIPS.

[35]  K. C. Tiwari,et al.  Spectral library creation and analysis of urban built-up surfaces and materials using field spectrometry , 2021, Arabian Journal of Geosciences.

[36]  Lei Tian,et al.  Practical methods for geometric distortion correction of aerial hyperspectral imagery , 2004 .

[37]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[38]  K. Itten,et al.  Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization , 2007 .

[39]  Eyal Ben-Dor,et al.  A spectral based recognition of the urban environment using the visible and near-infrared spectral region (0.4-1.1 µm). A case study over Tel-Aviv, Israel , 2001 .

[40]  Xiao Xiang Zhu,et al.  Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[41]  Aydin Akan,et al.  A new CNN training approach with application to hyperspectral image classification , 2021, Digit. Signal Process..

[42]  Yong Pang,et al.  Urban Tree Species Mapping Using Airborne LiDAR and Hyperspectral Data , 2016, Journal of the Indian Society of Remote Sensing.

[43]  Margaret E. Gardner,et al.  Spectrometry for urban area remote sensing—Development and analysis of a spectral library from 350 to 2400 nm , 2004 .

[44]  Yongyang Xu,et al.  Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters , 2018, Remote. Sens..

[45]  T. Kneib,et al.  Predicting Tree Species From 3D Laser Scanning Point Clouds Using Deep Learning , 2021, Frontiers in Plant Science.

[46]  M. Gilabert,et al.  Vegetation dynamics from NDVI time series analysis using the wavelet transform , 2009 .

[47]  Kiyun Yu,et al.  Assessing the Possibility of Landcover Classification Using Lidar Intensity Data , 2002 .

[48]  Fred Ortenberg Hyperspectral Sensor Characteristics , 2018, Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation.

[49]  X. Briottet,et al.  Spectral variability and bidirectional reflectance behaviour of urban materials at a 20 cm spatial resolution in the visible and near‐infrared wavelengths. A case study over Toulouse (France) , 2005 .

[50]  M. Ridd Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities , 1995 .

[51]  Jean-Michel Poggi,et al.  Variable selection using random forests , 2010, Pattern Recognit. Lett..

[52]  Boris Jutzi,et al.  Managing Full waveform LiDAR data: a challenging task for the forthcoming years , 2008 .

[53]  Samia Boukir,et al.  Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests , 2011 .

[54]  Sara Shirowzhan,et al.  Building Classification from Lidar Data for Spatio-temporal Assessment of 3D Urban Developments , 2017 .

[55]  Wai Yeung Yan,et al.  Urban land cover classification using airborne LiDAR data: A review , 2015 .

[56]  Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects , 2021, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[57]  Xiao Xiang Zhu,et al.  Hyperspectral and LiDAR Fusion Using Deep Three-Stream Convolutional Neural Networks , 2018, Remote. Sens..

[58]  Hermann Kaufmann,et al.  Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data , 2007 .

[59]  Hasan Asy'ari Arief,et al.  Land Cover Segmentation of Airborne LiDAR Data Using Stochastic Atrous Network , 2018, Remote. Sens..

[60]  J. Brasington,et al.  Object-based land cover classification using airborne LiDAR , 2008 .

[61]  Jon Atli Benediktsson,et al.  A new approach for the morphological segmentation of high-resolution satellite imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[62]  Jie Gong,et al.  Automated residential building detection from airborne LiDAR data with deep neural networks , 2018, Adv. Eng. Informatics.

[63]  Jean Ponce,et al.  General Road Detection From a Single Image , 2010, IEEE Transactions on Image Processing.

[64]  Jay Gao,et al.  Use of normalized difference built-up index in automatically mapping urban areas from TM imagery , 2003 .

[65]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[66]  Teemu Hakala,et al.  Artificial target detection with a hyperspectral LiDAR over 26-h measurement , 2015 .

[67]  O. Mutanga,et al.  Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review , 2010, Wetlands Ecology and Management.

[68]  Haiyan Guan,et al.  Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters , 2020, ISPRS Journal of Photogrammetry and Remote Sensing.

[69]  José F. Moreno,et al.  Regularized RBF Networks for Hyperspectral Data Classification , 2004, ICIAR.

[70]  Uwe Soergel,et al.  ANALYSIS OF FULL-WAVEFORM LIDAR DATA FOR CLASSIFICATION OF URBAN AREAS , 2008 .

[71]  Thomas Melzer,et al.  Non-parametric segmentation of ALS point clouds using mean shift , 2007 .

[72]  Francisco Herrera,et al.  Dynamic ensemble selection for multi-class imbalanced datasets , 2018, Inf. Sci..

[73]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  Wei Wei,et al.  A Hyperspectral Image Classification Framework with Spatial Pixel Pair Features , 2017, Sensors.

[75]  Hermann Kaufmann,et al.  Automated differentiation of urban surfaces based on airborne hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[76]  George Miliaresis,et al.  Segmentation and object-based classification for the extraction of the building class from LIDAR DEMs , 2007, Comput. Geosci..

[77]  Antonio Plaza,et al.  Scalable recurrent neural network for hyperspectral image classification , 2020, The Journal of Supercomputing.

[78]  J. Anthony Gualtieri,et al.  Support vector machines for hyperspectral remote sensing classification , 1999, Other Conferences.

[79]  Donald I.M. Enderle,et al.  Integrating Supervised and Unsupervised Classification Methods to Develop a More Accurate Land Cover Classification , 2005 .

[80]  M. Hodgson,et al.  Object-Based Land Cover Classification Using High-Posting-Density LiDAR Data , 2008 .

[81]  R. V. Rossel,et al.  Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy , 2006 .

[82]  Felix Morsdorf,et al.  Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling , 2009 .

[83]  Markus Hollaus,et al.  Object-Based Point Cloud Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation Classification , 2008, Sensors.

[84]  Lorenzo Bruzzone,et al.  Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[85]  Sen Jia,et al.  Convolutional neural networks for hyperspectral image classification , 2017, Neurocomputing.

[86]  Behnaz Bigdeli,et al.  A Multiple Classifier System for Classification of LIDAR Remote Sensing Data Using Multi-class SVM , 2010, MCS.

[87]  Qiqiang Chen,et al.  Spatial-Spectral Network for Hyperspectral Image Classification: A 3-D CNN and Bi-LSTM Framework , 2021, Remote. Sens..

[88]  Kevin W. Manning,et al.  The Integrated WRF/Urban Modeling System: Development, Evaluation, and Applications to Urban Environmental Problems , 2010 .

[89]  Jiechen Wang,et al.  The Extraction of Vegetation Points from LiDAR Using 3D Fractal Dimension Analyses , 2015, Remote. Sens..

[90]  Juha Hyyppä,et al.  Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating , 2017 .

[91]  C. Mallet,et al.  AIRBORNE LIDAR FEATURE SELECTION FOR URBAN CLASSIFICATION USING RANDOM FORESTS , 2009 .

[92]  E. Ben-Dor Imaging Spectrometry For Urban Applications , 2002 .

[93]  Patrick Hostert,et al.  Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines , 2007 .

[94]  R. Venkatesan,et al.  Hyperspectral Image Features Classification Using Deep Learning Recurrent Neural Networks , 2019, Journal of Medical Systems.

[95]  Brian Johnson,et al.  Unsupervised image segmentation evaluation and refinement using a multi-scale approach , 2011 .

[96]  Christopher E. Ndehedehe,et al.  Deep support vector machine for hyperspectral image classification , 2020, Pattern Recognit..

[97]  Wim Bakker,et al.  Imaging Spectrometry: Basic Analytical Techniques , 2002 .

[98]  C. Mallet,et al.  Processing full-waveform lidar data: Modelling raw signals , 2015 .

[99]  Frédéric Bretar,et al.  Full-waveform topographic lidar : State-of-the-art , 2009 .

[100]  Wei Zhang,et al.  Multiple Classifier System for Remote Sensing Image Classification: A Review , 2012, Sensors.

[101]  Fan Zhang,et al.  Deep Convolutional Neural Networks for Hyperspectral Image Classification , 2015, J. Sensors.

[102]  Yi-Hsing Tseng,et al.  Airborne Dual-Wavelength LiDAR Data for Classifying Land Cover , 2014, Remote. Sens..

[103]  T. Webster,et al.  Object-oriented land cover classification of lidar-derived surfaces , 2006 .

[104]  D. Roberts,et al.  Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments , 2009 .

[105]  Austin Troy,et al.  Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: A comparison study , 2009 .

[106]  Xin Huang,et al.  Information fusion of aerial images and LIDAR data in urban areas: vector-stacking, re-classification and post-processing approaches , 2011 .

[107]  A. Okujeni,et al.  Imaging Spectroscopy of Urban Environments , 2018, Surveys in Geophysics.

[108]  Pabitra Mitra,et al.  BASS Net: Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[109]  Xiao Xiang Zhu,et al.  Deep Recurrent Neural Networks for Hyperspectral Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[110]  Frank Canters,et al.  Synergistic Use of LiDAR and APEX Hyperspectral Data for High-Resolution Urban Land Cover Mapping , 2016, Remote. Sens..

[111]  Geoffrey E. Hinton,et al.  Layer Normalization , 2016, ArXiv.

[112]  Ping Tang,et al.  Supervised spatial classification of multispectral LiDAR data in urban areas , 2018, PloS one.

[113]  Guillermo Bastos,et al.  Detection of Very Small Tree Plantations and Tree-Level Characterization Using Open-Access Remote-Sensing Databases , 2020, Remote. Sens..

[114]  Anne Puissant,et al.  The utility of texture analysis to improve per‐pixel classification for high to very high spatial resolution imagery , 2005 .

[115]  Timothy A. Warner,et al.  Does spatial resolution matter? A multi-scale comparison of object-based and pixel-based methods for detecting change associated with gas well drilling operations , 2013 .

[116]  Yansheng Li,et al.  Unsupervised Spectral–Spatial Feature Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery Classification , 2015, IEEE Geoscience and Remote Sensing Letters.

[117]  Lori A. Magruder,et al.  Landcover classification of small-footprint, full-waveform lidar data , 2009 .

[118]  Gregory S. Okin,et al.  Relative spectral mixture analysis — A multitemporal index of total vegetation cover , 2005 .

[119]  Qingjie Liu,et al.  Road Extraction by Deep Residual U-Net , 2017, IEEE Geoscience and Remote Sensing Letters.

[120]  U. Benz,et al.  Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information , 2004 .

[121]  Uwe Soergel,et al.  Conditional Random Fields for Urban Scene Classification with Full Waveform LiDAR Data , 2011, PIA.

[122]  Bodo Bookhagen,et al.  Hyperspectral and Lidar Intensity Data Fusion: A Framework for the Rigorous Correction of Illumination, Anisotropic Effects, and Cross Calibration , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[123]  Tee-Ann Teo,et al.  Analysis of Land Cover Classification Using Multi-Wavelength LiDAR System , 2017 .

[124]  C. Briese,et al.  Archaeological prospection of forested areas using full-waveform airborne laser scanning , 2008 .

[125]  Thomas Blaschke,et al.  Geographic Object-Based Image Analysis – Towards a new paradigm , 2014, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[126]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[127]  S. Bhaskaran,et al.  Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data , 2010 .

[128]  David L. Miller,et al.  Drought response of urban trees and turfgrass using airborne imaging spectroscopy , 2020 .

[129]  Roberta E. Martin,et al.  Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion , 2012 .

[130]  E. A. Sylvestre,et al.  Self Modeling Curve Resolution , 1971 .

[131]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[132]  Bodo Bookhagen,et al.  3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[133]  N. Bryant,et al.  Investigation of the integration of AVIRIS and IFSAR for urban analysis , 1998 .

[134]  J. Reitberger,et al.  Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees , 2008 .

[135]  A. Coutts,et al.  Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning , 2016 .

[136]  V. Vapnik The Support Vector Method of Function Estimation , 1998 .

[137]  Hao Wu,et al.  Convolutional Recurrent Neural Networks forHyperspectral Data Classification , 2017, Remote. Sens..

[138]  Ying Li,et al.  Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network , 2017, Remote. Sens..

[139]  Uwe Stilla,et al.  Waveform processing of laser pulses for reconstruction of surfaces in urban areas , 2005 .

[140]  Wolfgang Wagner,et al.  Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts , 2010 .

[141]  Robert P. Sheridan,et al.  Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling , 2003, J. Chem. Inf. Comput. Sci..

[142]  Nguyen Quang Minh,et al.  Land cover classification using LiDAR intensity data and neural network , 2011 .

[143]  Helmi Zulhaidi Mohd Shafri,et al.  A novel spectral index to automatically extract road networks from WorldView-2 satellite imagery , 2015 .

[144]  C. Briese,et al.  A NEW METHOD FOR BUILDING EXTRACTION IN URBAN AREAS FROM HIGH-RESOLUTION LIDAR DATA , 2002 .

[145]  T. Esch,et al.  Urban structure type characterization using hyperspectral remote sensing and height information , 2012 .

[146]  Prabukumar Manoharan,et al.  Hyperspectral image classification using CNN with spectral and spatial features integration , 2020, Infrared Physics & Technology.

[147]  Yushi Chen,et al.  Spatial-Spectral Transformer for Hyperspectral Image Classification , 2021, Remote. Sens..

[148]  Douglas A. Miller,et al.  The Use of LiDAR Terrain Data in Characterizing Surface Roughness and Microtopography , 2013 .

[149]  Jocelyn Chanussot,et al.  Noise Reduction in Hyperspectral Imagery: Overview and Application , 2018, Remote. Sens..

[150]  Ebrahim Ghaderpour,et al.  Non-stationary and unequally spaced NDVI time series analyses by the LSWAVE software , 2020, International Journal of Remote Sensing.

[151]  J. R. Sveinsson,et al.  Mapping of hyperspectral AVIRIS data using machine-learning algorithms , 2009 .

[152]  M. Alberti,et al.  Predicting land cover change and avian community responses in rapidly urbanizing environments , 2008, Landscape Ecology.

[153]  Zheng Zhang,et al.  A Developed Siamese CNN with 3D Adaptive Spatial-Spectral Pyramid Pooling for Hyperspectral Image Classification , 2020, Remote. Sens..

[154]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.