Pareto-coevolutionary genetic programming classifier

The conversion and extension of the Incremental Pareto-Coevolution Archive algorithm (IPCA) into the domain of Genetic Programming classifier evolution is presented. In order to accomplish efficiency in regards to classifier evaluation on training data, the coevolutionary aspect of the IPCA algorithm is utilized to simultaneously evolve a subset of the training data that provides distinctions between candidate classifiers. The algorithm is compared in terms of classification "score" (equal weight to detection rate, and 1 - false positive rate), and run-time against a traditional GP classifier using the entirety of the training data for evaluation, and a GP classifier which performs Dynamic Subset Selection. The results indicate that the presented algorithm outperforms the subset selection algorithm in terms of classification score, and outperforms the traditional classifier while requiring roughly 1430 of the wall-clock time.

[1]  John R. Koza,et al.  Genetic Programming II , 1992 .

[2]  Malcolm I. Heywood,et al.  Towards Efficient Training on Large Datasets for Genetic Programming , 2004, Canadian AI.

[3]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[4]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[5]  Chuanyi Ji,et al.  Performance and efficiency: recent advances in supervised learning , 1999, Proc. IEEE.

[6]  Peter Ross,et al.  Dynamic Training Subset Selection for Supervised Learning in Genetic Programming , 1994, PPSN.

[7]  Peter Nordin,et al.  An On-Line Method to Evolve Behavior and to Control a Miniature Robot in Real Time with Genetic Programming , 1996, Adapt. Behav..

[8]  J. Pollack,et al.  Coevolutionary dynamics in a minimal substrate , 2001 .

[9]  JapkowiczNathalie,et al.  The class imbalance problem: A systematic study , 2002 .

[10]  Foster J. Provost,et al.  Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction , 2003, J. Artif. Intell. Res..

[11]  R. Watson,et al.  Pareto coevolution: using performance against coevolved opponents in a game as dimensions for Pareto selection , 2001 .

[12]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[13]  Patrick D. Surry,et al.  Fundamental Limitations on Search Algorithms: Evolutionary Computing in Perspective , 1995, Computer Science Today.

[14]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[15]  Edwin D. de Jong,et al.  Intransitivity in Coevolution , 2004, PPSN.

[16]  Peter J. Angeline,et al.  Massively Parallel Genetic Programming , 1996 .

[17]  Giandomenico Spezzano,et al.  Ensemble Techniques for Parallel Genetic Programming Based Classifiers , 2003, EuroGP.

[18]  Edwin D. de Jong,et al.  The Incremental Pareto-Coevolution Archive , 2004, GECCO.

[19]  Wolfgang Banzhaf,et al.  Dynamic Subset Selection Based on a Fitness Case Topology , 2004, Evolutionary Computation.

[20]  John R. Koza,et al.  Genetic programming II (videotape): the next generation , 1994 .

[21]  Nathalie Japkowicz,et al.  The class imbalance problem: A systematic study , 2002, Intell. Data Anal..

[22]  Malcolm I. Heywood,et al.  Training genetic programming on half a million patterns: an example from anomaly detection , 2005, IEEE Transactions on Evolutionary Computation.

[23]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[24]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[25]  Edwin D. de Jong,et al.  Ideal Evaluation from Coevolution , 2004, Evolutionary Computation.

[26]  Edwin D. de Jong,et al.  Towards a bounded Pareto-coevolution archive , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[27]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[28]  Peter Nordin,et al.  A compiling genetic programming system that directly manipulates the machine-code , 1994 .

[29]  Wei-Yin Loh,et al.  A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms , 2000, Machine Learning.