LayNii: A software suite for layer-fMRI

High-resolution fMRI in the sub-millimeter regime allows researchers to resolve brain activity across cortical layers and columns non-invasively. While these high-resolution data make it possible to address novel questions of directional information flow within and across brain circuits, the corresponding data analyses are challenged by MRI artifacts, including image blurring, image distortions, low SNR, and restricted coverage. These challenges often result in insufficient spatial accuracy of con-ventional analysis pipelines. Here we introduce a new software suite that is specifically designed for layer-specific functional MRI: LayNii. This toolbox is a collection of command-line executable programs written in C/C++ and is distributed open-source and as pre-compiled binaries for Linux, Windows, and macOS. LayNii is designed for layer-fMRI data that suffer from SNR and coverage constraints and thus cannot be straightforwardly analyzed in alternative software packages. Some of the most popular programs of LayNii contain ‘layerification’ and columnarization in the native voxel space of functional data as well as many other layer-fMRI specific analysis tasks: layer-specific smoothing, model-based deveining of GE-BOLD data, quality assessment of artifact dominated sub-millimeter fMRI, as well as analyses of VASO data. Graphical abstract

[1]  Christian Windischberger,et al.  Vascular autorescaling of fMRI (VasA fMRI) improves sensitivity of population studies: A pilot study , 2016, NeuroImage.

[2]  Laurentius Huber,et al.  Techniques for blood volume fMRI with VASO: From low-resolution mapping towards sub-millimeter layer-dependent applications , 2018, NeuroImage.

[3]  Benedikt A. Poser,et al.  Integrated VASO and perfusion contrast: A new tool for laminar functional MRI , 2019, NeuroImage.

[4]  S. Bok Der Einflu\ der in den Furchen und Windungen auftretenden Krümmungen der Gro\hirnrinde auf die Rindenarchitektur , 1929 .

[5]  Essa Yacoub,et al.  Evaluating the Columnar Stability of Acoustic Processing in the Human Auditory Cortex , 2018, The Journal of Neuroscience.

[6]  Laurentius Huber,et al.  Layer-dependent functional connectivity methods , 2020, Progress in Neurobiology.

[7]  Nikos K Logothetis,et al.  Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys. , 2010, Magnetic resonance imaging.

[8]  Dimo Ivanov,et al.  Impact of acquisition and analysis strategies on cortical depth-dependent fMRI , 2017, NeuroImage.

[9]  Essa Yacoub,et al.  Defining region-specific masks for reliable depth-dependent analysis of fMRI data , 2019, bioRxiv.

[10]  Antonio Ulloa,et al.  Simulating laminar neuroimaging data for a visual delayed match-to-sample task , 2018, NeuroImage.

[11]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[12]  Michael Breakspear,et al.  The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex , 2016, NeuroImage.

[13]  Klaus Scheffler,et al.  Functional MRI in human subjects with gradient‐echo and spin‐echo EPI at 9.4 T , 2014, Magnetic resonance in medicine.

[14]  M. Barth,et al.  New acquisition techniques and their prospects for the achievable resolution of fMRI , 2020, Progress in Neurobiology.

[15]  Pierre-Louis Bazin,et al.  Laminar signal extraction over extended cortical areas by means of a spatial GLM , 2018, bioRxiv.

[16]  A. Anderson,et al.  Reduction of noise in diffusion tensor images using anisotropic smoothing , 2005, Magnetic resonance in medicine.

[17]  Essa Yacoub,et al.  Processing of frequency and location in human subcortical auditory structures , 2015, Scientific Reports.

[18]  Jian Wang,et al.  SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data , 2017, GigaScience.

[19]  Joseph Paul Cohen,et al.  BigBrain 3D atlas of cortical layers: Cortical and laminar thickness gradients diverge in sensory and motor cortices , 2019, bioRxiv.

[20]  Denis Schluppeck,et al.  Exploring structure and function of sensory cortex with 7T MRI , 2018, NeuroImage.

[21]  Hanno Scharr,et al.  A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance , 2002, J. Vis. Commun. Image Represent..

[22]  Stephen A. Engel,et al.  Depth-dependent functional MRI responses to chromatic and achromatic stimuli throughout V1 and V2 , 2021, NeuroImage.

[23]  Essa Yacoub,et al.  High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4 T , 2018, NeuroImage.

[24]  Alan C. Evans,et al.  BigBrain: An Ultrahigh-Resolution 3D Human Brain Model , 2013, Science.

[25]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[26]  Satrajit S. Ghosh,et al.  FMRIPrep: a robust preprocessing pipeline for functional MRI , 2018, bioRxiv.

[27]  Jonathan R. Polimeni,et al.  Eye-selective fMRI activity in human primary visual cortex: Comparison between 3 ​T and 9.4 ​T, and effects across cortical depth , 2020, NeuroImage.

[28]  Won Mok Shim,et al.  Measuring layer-dependent CBV fMRI in the visual system , 2019 .

[29]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[30]  Gang Chen,et al.  Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex , 2019, Science Advances.

[31]  Laurentius Huber,et al.  Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex , 2018, NeuroImage.

[32]  Cheryl A. Olman,et al.  Forging a path to mesoscopic imaging success with ultra-high field functional magnetic resonance imaging , 2020, Philosophical Transactions of the Royal Society B.

[33]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[34]  Federico Giove,et al.  Smoothing that does not blur: Effects of the anisotropic approach for evaluating diffusion tensor imaging data in the clinic , 2010, Journal of magnetic resonance imaging : JMRI.

[35]  Laurentius Huber,et al.  Comparison of BOLD and CBV using 3D EPI and 3D GRASE for cortical layer fMRI at 7T , 2019 .

[36]  Nikolaus Weiskopf,et al.  Physiological basis of vascular autocalibration (VasA): Comparison to hypercapnia calibration methods , 2016, Magnetic resonance in medicine.

[37]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[38]  José P. Marques,et al.  Examples of sub-millimeter, 7T, T1-weighted EPI datasets acquired with the T123DEPI sequence , 2018, Data in brief.

[39]  Leonie Lampe,et al.  Cortical laminar resting‐state signal fluctuations scale with the hypercapnic blood oxygenation level‐dependent response , 2020, Human brain mapping.

[40]  Wietske van der Zwaag,et al.  Distortion-matched T1 maps and unbiased T1-weighted images as anatomical reference for high-resolution fMRI , 2018, NeuroImage.

[41]  Richard C. Reynolds,et al.  SUMA , 2012, NeuroImage.

[42]  Lars Muckli,et al.  The laminar integration of sensory inputs with feedback signals in human cortex , 2017, Brain and Cognition.

[43]  Allan R. Jones,et al.  Comprehensive cellular‐resolution atlas of the adult human brain , 2016, The Journal of comparative neurology.

[44]  Jonathan R. Polimeni,et al.  Analysis strategies for high-resolution UHF-fMRI data , 2017, NeuroImage.

[45]  Dimo Ivanov,et al.  Cortical depth profiles of luminance contrast responses in human V1 and V2 using 7 T fMRI , 2018, Human brain mapping.

[46]  David J. Heeger,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[47]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[48]  Leonie Lampe,et al.  Lamina-dependent calibrated BOLD response in human primary motor cortex , 2016, NeuroImage.

[49]  Gabriele Lohmann,et al.  LIPSIA: Leipzig Image Processing and Statistical Inference Algorithms , 2001 .

[50]  Gautam Reddy,et al.  Odorant Receptor Inhibition Is Fundamental to Odor Encoding , 2020, Current Biology.

[51]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[52]  M. Tosetti,et al.  Characterization of high-resolution Gradient Echo and Spin Echo EPI for fMRI in the human visual cortex at 7T. , 2017, Magnetic resonance imaging.

[53]  Jennifer L. Cuzzocreo,et al.  Volumetric neuroimage analysis extensions for the MIPAV software package , 2007, Journal of Neuroscience Methods.

[54]  Klaus Scheffler,et al.  Impact of prospective motion correction, distortion correction methods and large vein bias on the spatial accuracy of cortical laminar fMRI at 9.4 Tesla , 2019, NeuroImage.

[55]  Society of magnetic resonance in medicine , 1990 .

[56]  Essa Yacoub,et al.  Pushing the spatio-temporal limits of MRI and fMRI , 2018, NeuroImage.

[57]  Lawrence L. Wald,et al.  Physiological noise and signal-to-noise ratio in fMRI with multi-channel array coils , 2011, NeuroImage.

[58]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[59]  Leonie Lampe,et al.  Cortical laminar resting-state fluctuations scale with hypercapnic BOLD response , 2019 .

[60]  Robert Turner,et al.  Slab‐selective, BOLD‐corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal‐to‐noise ratio , 2014, Magnetic resonance in medicine.

[61]  Dimo Ivanov,et al.  Resolving laminar activation in human V1 using ultra-high spatial resolution fMRI at 7T , 2018, Scientific Reports.

[62]  Martin Havlicek,et al.  A dynamical model of the laminar BOLD response , 2019, NeuroImage.

[63]  Kâmil Uludag,et al.  Linking brain vascular physiology to hemodynamic response in ultra-high field MRI , 2017, NeuroImage.

[64]  Rainer Goebel,et al.  Columnar clusters in the human motion complex reflect consciously perceived motion axis , 2019, Proceedings of the National Academy of Sciences.

[65]  Martin I. Sereno,et al.  Modelling the Human Cortex in Three Dimensions , 2018, Trends in Cognitive Sciences.

[66]  T. C. Lacy,et al.  Cortical Depth-Dependent Modeling of Visual Hemodynamic Responses , 2020, bioRxiv.

[67]  N. Logothetis,et al.  Neural and BOLD responses across the brain. , 2012, Wiley interdisciplinary reviews. Cognitive science.

[68]  Jae-Hun Kim,et al.  Spatial accuracy of fMRI activation influenced by volume- and surface-based spatial smoothing techniques , 2007, NeuroImage.

[69]  Rüdiger Stirnberg,et al.  Segmented K-Space Blipped-Controlled Aliasing in Parallel Imaging (Skipped-CAIPI) for High Spatiotemporal Resolution Echo Planar Imaging , 2020, bioRxiv.

[70]  Robert Turner,et al.  Resolving multisensory and attentional influences across cortical depth in sensory cortices , 2019, bioRxiv.

[71]  Laurentius Huber,et al.  Layer-Specific Contributions to Imagined and Executed Hand Movements in Human Primary Motor Cortex , 2020, Current Biology.

[72]  Essa Yacoub,et al.  Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field , 2018, NeuroImage.

[73]  Richard Arwed b. Pfeifer Die angioarchitektonische areale Gliederung der Grosshirnrinde : auf Grund vollkommener Gefässinjektionspräparate vom Gehirn des Macacus Rhesus anatomisch Dargestellt , 1940 .

[74]  K. Bui,et al.  The inner junction complex of the cilia is an interaction hub that involves tubulin post-translational modifications , 2020, eLife.

[75]  Laurentius Huber Survey results: biggest challenges of high-resolution fMRI , 2018 .

[76]  S. Shen,et al.  The statistical analysis of compositional data , 1983 .

[77]  David G Norris,et al.  Dissociable laminar profiles of concurrent bottom-up and top-down modulation in the human visual cortex , 2018, bioRxiv.

[78]  Alan C. Evans,et al.  Mapping Cortical Laminar Structure in the 3D BigBrain , 2018, Cerebral cortex.

[79]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[80]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[81]  Klaus Scheffler,et al.  Dependence of resting-state fMRI fluctuation amplitudes on cerebral cortical orientation relative to the direction of B0 and anatomical axes , 2019, NeuroImage.

[82]  Nikos K Logothetis,et al.  Laminar specificity in monkey V1 using high-resolution SE-fMRI. , 2006, Magnetic resonance imaging.

[83]  Jonathan R. Polimeni,et al.  Laminar (f)MRI: A short history and future prospects , 2019, NeuroImage.

[84]  R. Turner,et al.  Deficient approaches to human neuroimaging , 2014, Front. Hum. Neurosci..

[85]  Markus Barth,et al.  A cortical vascular model for examining the specificity of the laminar BOLD signal , 2016, NeuroImage.

[86]  Lawrence L. Wald,et al.  Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data , 2019, NeuroImage.

[87]  N. Logothetis,et al.  High-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses , 2012, Neuron.

[88]  Robert Turner,et al.  Recent applications of UHF‐MRI in the study of human brain function and structure: a review , 2016, NMR in biomedicine.

[89]  Peter J. Molfese,et al.  Layer-dependent activity in human prefrontal cortex during working memory , 2018, Nature Neuroscience.

[90]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[91]  Claudine Joëlle Gauthier,et al.  Cortical lamina-dependent blood volume changes in human brain at 7T , 2015, NeuroImage.

[92]  Thies H Jochimsen,et al.  ODIN-object-oriented development interface for NMR. , 2004, Journal of magnetic resonance.

[93]  Kawin Setsompop,et al.  Pulse sequences and parallel imaging for high spatiotemporal resolution MRI at ultra-high field , 2017, NeuroImage.

[94]  W van der Zwaag,et al.  Temporal SNR characteristics in segmented 3D‐EPI at 7T , 2012, Magnetic resonance in medicine.

[95]  K. Uğurbil,et al.  Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1 , 2012, PloS one.

[96]  Federico De Martino,et al.  A scalable method to improve gray matter segmentation at ultra high field MRI , 2018, PloS one.

[97]  John Ashburner,et al.  SPM: A history , 2012, NeuroImage.

[98]  Harald E. Möller,et al.  Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2 , 2017, NeuroImage.

[99]  José P. Marques,et al.  Estimation of laminar BOLD activation profiles using deconvolution with a physiological point spread function , 2020, Journal of Neuroscience Methods.

[100]  Natalia Petridou,et al.  Laminar imaging of positive and negative BOLD in human visual cortex at 7T , 2018, NeuroImage.

[101]  David G. Norris,et al.  Author response: Dissociable laminar profiles of concurrent bottom-up and top-down modulation in the human visual cortex , 2019 .

[102]  Juliane Dinse,et al.  A computational framework for ultra-high resolution cortical segmentation at 7Tesla , 2014, NeuroImage.

[103]  Laurentius Huber,et al.  Comparison of BOLD and CBV using 3D EPI and 3D GRASE for cortical layer functional MRI at 7 T , 2020, Magnetic resonance in medicine.

[104]  Natalia Petridou,et al.  Laminar fMRI: What can the time domain tell us? , 2017, NeuroImage.

[105]  Karl J. Friston,et al.  Anatomically Informed Basis Functions , 2000, NeuroImage.

[106]  Harald E. Möller,et al.  Functional cerebral blood volume mapping with simultaneous multi-slice acquisition , 2016, NeuroImage.

[107]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[108]  Yoshua Bengio,et al.  Automated segmentation of cortical layers in BigBrain reveals divergent cortical and laminar thickness gradients in sensory and motor cortices. , 2019 .

[109]  David C. Jangraw,et al.  Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: Capabilities and challenges , 2018, NeuroImage.

[110]  Laurentius Huber,et al.  High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1 , 2017, Neuron.

[111]  Robert Turner,et al.  Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7T , 2014, NeuroImage.

[112]  Nikos K. Logothetis,et al.  fMRI at High Spatial Resolution: Implications for BOLD-Models , 2016, Front. Comput. Neurosci..

[113]  Klaus Scheffler,et al.  LISA improves statistical analysis for fMRI , 2018, Nature Communications.

[114]  Julia M. Huntenburg,et al.  Nighres: processing tools for high-resolution neuroimaging , 2018, GigaScience.

[115]  N. Petridou,et al.  Pushing the limits of high‐resolution functional MRI using a simple high‐density multi‐element coil design , 2013, NMR in biomedicine.

[116]  J. Pekar,et al.  Functional magnetic resonance imaging based on changes in vascular space occupancy , 2003, Magnetic resonance in medicine.

[117]  Rolf Gruetter,et al.  Investigation of high-resolution functional magnetic resonance imaging by means of surface and array radiofrequency coils at 7 T. , 2009, Magnetic resonance imaging.

[118]  Laurentius Huber,et al.  Higher and deeper: Bringing layer fMRI to association cortex , 2020, Progress in Neurobiology.

[119]  N. Logothetis,et al.  High-resolution fMRI of macaque V1. , 2007, Magnetic resonance imaging.

[120]  Rainer Goebel,et al.  BrainVoyager — Past, present, future , 2012, NeuroImage.

[121]  V. Pawlowsky-Glahn,et al.  Modeling and Analysis of Compositional Data , 2015 .

[122]  David C. Jangraw,et al.  Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: Capabilities and challenges , 2017, NeuroImage.

[123]  Rainer Goebel,et al.  Suppressive recurrent and feedback computations for adaptive processing in the human brain , 2020, bioRxiv.

[124]  Tomas Knapen,et al.  Ultra-high resolution fMRI reveals origins of feedforward and feedback activity within laminae of human ocular dominance columns , 2020, bioRxiv.

[125]  Klaas E. Stephan,et al.  A hemodynamic model for layered BOLD signals , 2016, NeuroImage.