Existence of infinitely many large solutions for the nonlinear Schrödinger–Maxwell equations

Abstract In this paper, we study the nonlinear stationary Schrodinger–Maxwell equations (∗) { − Δ u + V ( x ) u + ϕ u = f ( x , u ) , in  R 3 , − Δ ϕ = u 2 , in  R 3 . Using the variant fountain theorem introduced by Zou [W. Zou, Variant fountain theorems and their applications, Manuscripta Math. 104 (2001) 343–358], under certain assumptions on V and f , we get infinitely many large solutions for (∗) .

[1]  Thomas Bartsch,et al.  Existence and multiplicity results for some superlinear elliptic problems on RN , 1995 .

[2]  Vieri Benci,et al.  An eigenvalue problem for the Schrödinger-Maxwell equations , 1998 .

[3]  Antonio Azzollini,et al.  A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations , 2007, math/0703677.

[4]  Juncheng Wei,et al.  On Bound States Concentrating on Spheres for the Maxwell-Schrödinger Equation , 2005, SIAM J. Math. Anal..

[5]  Wenming Zou,et al.  Variant fountain theorems and their applications , 2001 .

[6]  Pietro d’Avenia,et al.  Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations , 2002 .

[7]  Multiple Solitary Waves for Non-Homogeneous Schrödinger–Maxwell Equations , 2006 .

[8]  M. Willem Minimax Theorems , 1997 .

[9]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[10]  Huan-Song Zhou,et al.  Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$ , 2007 .

[11]  M. Willem,et al.  On An Elliptic Equation With Concave and Convex Nonlinearities , 1995 .

[12]  Hiroaki Kikuchi On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations , 2007 .

[13]  Chun-Lei Tang,et al.  High energy solutions for the superlinear Schrödinger–Maxwell equations☆ , 2009 .

[14]  Dimitri Mugnai,et al.  Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[15]  David Ruiz,et al.  The Schrödinger–Poisson equation under the effect of a nonlinear local term , 2006 .

[16]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[17]  David Ruiz,et al.  Multiple bound states for the Schroedinger-Poisson problem , 2008 .

[18]  Fukun Zhao,et al.  On the existence of solutions for the Schrödinger-Poisson equations , 2008 .

[19]  Fukun Zhao,et al.  Positive solutions for Schrödinger–Poisson equations with a critical exponent , 2009 .

[20]  Thomas Bartsch,et al.  Infinitely many solutions of a symmetric Dirichlet problem , 1993 .

[21]  David Ruiz,et al.  SEMICLASSICAL STATES FOR COUPLED SCHRÖDINGER–MAXWELL EQUATIONS: CONCENTRATION AROUND A SPHERE , 2005 .