Likelihood‐free parameter estimation for dynamic queueing networks: Case study of passenger flow in an international airport terminal

Many complex real-world systems such as airport terminals, manufacturing processes and hospitals are modelled with dynamic queueing networks (DQNs). To estimate parameters, restrictive assumptions are usually placed on these models. For instance arrival and service distributions are assumed to be time-invariant, which allows for likelihood-based parameter estimation, but realistic DQNs often violate this assumption. We consider the problem of using data to estimate the parameters of a DQN. We combine computationally efficient simulation of DQNs with approximate Bayesian computation and an estimator for maximum mean discrepancy. Forecasts are made which account for parameter uncertainty. We motivate and demonstrate this work with an example of an international airport passenger terminal.

[1]  Jyrki Katajainen,et al.  Sorting multisets stably in minimum space , 1992, Acta Informatica.

[2]  Dennis F. X. Mathaisel,et al.  Optimizing Gate Assignments at Airport Terminals , 1985, Transp. Sci..

[3]  Michael I. Jordan,et al.  Bayesian inference for queueing networks and modeling of internet services , 2010, 1001.3355.

[4]  Sridha Sridharan,et al.  Large scale monitoring of crowds and building utilisation: A new database and distributed approach , 2015, 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[5]  Bernhard Schölkopf,et al.  Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..

[6]  A. Müller Integral Probability Metrics and Their Generating Classes of Functions , 1997, Advances in Applied Probability.

[7]  M. J. Bayarri,et al.  Bayesian prediction inM/M/1 queues , 1994, Queueing Syst. Theory Appl..

[8]  Jukka-Pekka Onnela,et al.  ABCpy: A User-Friendly, Extensible, and Parallel Library for Approximate Bayesian Computation , 2017, PASC.

[9]  Seth B. Young,et al.  Evaluation of Pedestrian Walking Speeds in Airport Terminals , 1999 .

[10]  Bai Jiang,et al.  Approximate Bayesian Computation with Kullback-Leibler Divergence as Data Discrepancy , 2018, AISTATS.

[11]  Richard E. Nance,et al.  The time and state relationships in simulation modeling , 1981, CACM.

[12]  Shi Cao,et al.  Queueing Network Modeling of Human Performance in Complex Cognitive Multi-task Scenarios. , 2013 .

[13]  Kerrie Mengersen,et al.  Computationally Efficient Simulation of Queues: The R Package queuecomputer , 2017, J. Stat. Softw..

[14]  Paul Fearnhead,et al.  Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .

[15]  C. Robert,et al.  Inference in generative models using the Wasserstein distance , 2017, 1701.05146.

[16]  Daniel A. Keim,et al.  The Role of Uncertainty, Awareness, and Trust in Visual Analytics , 2016, IEEE Transactions on Visualization and Computer Graphics.

[17]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[18]  Olivier François,et al.  Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..

[19]  Michael P. Wiper,et al.  Mixtures of Gamma Distributions With Applications , 2001 .

[20]  Yanan Fan,et al.  Likelihood-Free MCMC , 2011 .

[21]  S. Sisson,et al.  A comparative review of dimension reduction methods in approximate Bayesian computation , 2012, 1202.3819.

[22]  M. J. Bayarri,et al.  Dealing with Uncertainties in Queues and Networks of Queues: a Bayesian Approach , 2022 .

[23]  D. Kendall Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov Chain , 1953 .

[24]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[25]  Richard G. Everitt,et al.  Likelihood-free estimation of model evidence , 2011 .

[26]  Paul P. Wu,et al.  A Hybrid Queue-based Bayesian Network framework for passenger facilitation modelling , 2013 .

[27]  Anthony N. Pettitt,et al.  Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation , 2015, PLoS Comput. Biol..

[28]  Avishai Mandelbaum,et al.  Statistical Analysis of a Telephone Call Center , 2005 .

[29]  Vojin S. Tosic,et al.  A review of airport passenger terminal operations analysis and modelling , 1992 .

[30]  Paul P. Wu,et al.  A review of models and model usage scenarios for an airport complex system , 2013 .

[31]  Bernhard Schölkopf,et al.  A Kernel Method for the Two-Sample-Problem , 2006, NIPS.

[32]  Peter Berster,et al.  Do airport capacity constraints have a serious impact on the future development of air traffic , 2013 .

[33]  H. Takagi,et al.  Queueing network model for obstetric patient flow in a hospital , 2016, Health Care Management Science.

[34]  M. Gutmann,et al.  Fundamentals and Recent Developments in Approximate Bayesian Computation , 2016, Systematic biology.

[35]  Ritabrata Dutta,et al.  Likelihood-free inference via classification , 2014, Stat. Comput..

[36]  Marwan Al-Azzawi,et al.  Modeling Pedestrian Walking Speeds on Sidewalks , 2007 .

[37]  Yi Zhou,et al.  Dynamic Queuing Network Model for Flow Contingency Management , 2011, IEEE Transactions on Intelligent Transportation Systems.

[38]  Amedeo R. Odoni,et al.  Modelling delay propagation within an airport network , 2013 .

[39]  Avishai Mandelbaum,et al.  ON PATIENT FLOW IN HOSPITALS: A DATA-BASED QUEUEING-SCIENCE PERSPECTIVE , 2015 .

[40]  Vinayak Deshpande,et al.  The Impact of Airline Flight Schedules on Flight Delays , 2012, Manuf. Serv. Oper. Manag..

[41]  Curtis T. Ogle,et al.  Proteolytic crosstalk in multi-protease networks , 2016, Physical biology.

[42]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[43]  Hans R. Künsch,et al.  A simulated annealing approach to approximate Bayes computations , 2012, Statistics and Computing.

[44]  Ronald W. Wolff,et al.  Problems of Statistical Inference for Birth and Death Queuing Models , 1965 .

[45]  J. R. Jackson Networks of Waiting Lines , 1957 .

[46]  Yves Dallery,et al.  Manufacturing flow line systems: a review of models and analytical results , 1992, Queueing Syst. Theory Appl..

[47]  O. François,et al.  Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.

[48]  Christian P. Robert,et al.  On parameter estimation with the Wasserstein distance , 2017, Information and Inference: A Journal of the IMA.

[49]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[50]  K. Heggland,et al.  Estimating functions in indirect inference , 2004 .

[51]  David R. Pendergraft,et al.  Simulation of an airport passenger security system , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[52]  Avishai Mandelbaum,et al.  Telephone Call Centers: Tutorial, Review, and Research Prospects , 2003, Manuf. Serv. Oper. Manag..

[53]  Michael P. Wiper,et al.  Bayesian Analysis of Stochastic Process Models , 2012 .

[54]  Wittawat Jitkrittum,et al.  K2-ABC: Approximate Bayesian Computation with Kernel Embeddings , 2015, AISTATS.

[55]  Erhan Kozan,et al.  COMPARISON OF ANALYTICAL AND SIMULATION PLANNING MODELS OF SEAPORT CONTAINER TERMINALS , 1997 .