Choice Between Weibull and Lognormal Models: A Simulation Based Bayesian Study

Abstract The Weibull and the lognormal distributions are the most widely used models for analyzing a variety of data from different fields. It is often seen that the two models quite nicely represent a given data set although the concerned analyses and the related inferential procedures may differ drastically. It is, therefore, highly desirable to study the behavior of the two models for a given set of observations in the light of recent tool-kits of model comparison/model choice. The article considers examining the issue of choosing the right model through a simulation based Bayesian study using the output from the Gibbs sampler.

[1]  Bruce M. Hill,et al.  The Three-Parameter Lognormal Distribution and Bayesian Analysis of a Point-Source Epidemic , 1963 .

[2]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[3]  I. Guttman The Use of the Concept of a Future Observation in Goodness‐Of‐Fit Problems , 1967 .

[4]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[5]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[6]  Charles E. Antle,et al.  Discrimination Between the Log-Normal and the Weibull Distributions , 1973 .

[7]  George E. P. Box,et al.  Sampling and Bayes' inference in scientific modelling and robustness , 1980 .

[8]  A. O'Hagan,et al.  Fractional Bayes factors for model comparison , 1995 .

[9]  Richard L. Smith,et al.  A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .

[10]  Betty Jones Whitten,et al.  Estimation in the Three-Parameter Lognormal Distribution , 1980 .

[11]  S. Sinha,et al.  Bayes estimation of the parameters and reliability function of the 3-parameter Weibull distribution , 1988 .

[12]  A. H. Moore,et al.  Local-Maximum-Likelihood Estimation of the Parameters of Three-Parameter Lognormal Populations from Complete and Censored Samples , 1966 .

[13]  Further considerations of modified moment estimators for weibull and lognormal parameters , 1996 .

[14]  J. H. Sheesley Methods for Statistical Analysis of Reliability and Life Data , 1977 .

[15]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[16]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[17]  Fulvio Spezzaferri,et al.  Alternative Bayes factors for model selection , 1997 .

[18]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[19]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[20]  P. R. Fisk,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1971 .

[21]  Z. A. Lomnicki Methods for Statistical Analysis of Reliability and Life Data , 1976 .

[22]  D. Spiegelhalter,et al.  Bayes Factors for Linear and Log‐Linear Models with Vague Prior Information , 1982 .

[23]  M. Aitkin Posterior Bayes Factors , 1991 .

[24]  Charles E. Antle,et al.  Likelihood Ratio Test for DiscriminaGon Between Two Models with Unknown Location and Scale Parameters , 1973 .

[25]  J. Berger,et al.  Testing Precise Hypotheses , 1987 .

[26]  M. Tiku,et al.  Estimating the mean and standard deviation from a censored normal sample. , 1967, Biometrika.

[27]  M. Peshwani,et al.  Full posterior analysis of three parameter lognormal distribution using gibbs sampler , 2001 .

[28]  S. Geisser,et al.  A Predictive Approach to Model Selection , 1979 .

[29]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .