Ubiquitin-dependent lysosomal membrane protein sorting and degradation.

[1]  C. Ungermann,et al.  Principles of membrane tethering and fusion in endosome and lysosome biogenesis. , 2014, Current opinion in cell biology.

[2]  D. Sabatini,et al.  Regulation of mTORC1 by amino acids. , 2014, Trends in cell biology.

[3]  H. Dohlman,et al.  Guanine Nucleotide-binding Protein (Gα) Endocytosis by a Cascade of Ubiquitin Binding Domain Proteins Is Required for Sustained Morphogenesis and Proper Mating in Yeast* , 2014, The Journal of Biological Chemistry.

[4]  F. Platt,et al.  The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. , 2012, The Journal of cell biology.

[5]  B. André,et al.  Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy , 2012, Proceedings of the National Academy of Sciences.

[6]  M. Seaman The retromer complex – endosomal protein recycling and beyond , 2012, Journal of Cell Science.

[7]  C. Burd,et al.  Rab GTPase regulation of retromer-mediated cargo export during endosome maturation , 2012, Molecular biology of the cell.

[8]  Scott D Emr,et al.  The ESCRT pathway. , 2011, Developmental cell.

[9]  R. Norton,et al.  The SPRY domain–containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation , 2010, The Journal of cell biology.

[10]  B. André,et al.  The ubiquitin code of yeast permease trafficking. , 2010, Trends in cell biology.

[11]  Kalle Jonasson,et al.  Prediction of the human membrane proteome , 2010, Proteomics.

[12]  D. Klionsky,et al.  Regulation mechanisms and signaling pathways of autophagy. , 2009, Annual review of genetics.

[13]  D. Sabatini,et al.  mTOR signaling at a glance , 2009, Journal of Cell Science.

[14]  H. McMahon,et al.  Mechanisms of endocytosis. , 2009, Annual review of biochemistry.

[15]  J. Bonifacino,et al.  Sorting of lysosomal proteins. , 2009, Biochimica et biophysica acta.

[16]  S. Emr,et al.  Arrestin-Related Ubiquitin-Ligase Adaptors Regulate Endocytosis and Protein Turnover at the Cell Surface , 2008, Cell.

[17]  R. Haguenauer‐Tsapis,et al.  Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking. , 2008, Biochemical Society transactions.

[18]  R. Haguenauer‐Tsapis,et al.  Ear1p and Ssh4p are new adaptors of the ubiquitin ligase Rsp5p for cargo ubiquitylation and sorting at multivesicular bodies. , 2008, Molecular biology of the cell.

[19]  N. Krogan,et al.  Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast , 2007, Molecular systems biology.

[20]  C. Richter,et al.  Dual mechanisms specify Doa4‐mediated deubiquitination at multivesicular bodies , 2007, The EMBO journal.

[21]  P. Ljungdahl,et al.  Ssh4, Rcr2 and Rcr1 Affect Plasma Membrane Transporter Activity in Saccharomyces cerevisiae , 2007, Genetics.

[22]  Y. Noda,et al.  Peculiar Protein–Protein Interactions of the Novel Endoplasmic Reticulum Membrane Protein Rcr1 and Ubiquitin Ligase Rsp5 , 2007, Bioscience, biotechnology, and biochemistry.

[23]  D. Pearce,et al.  Defective lysosomal arginine transport in juvenile Batten disease. , 2005, Human molecular genetics.

[24]  T. Stevens,et al.  Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. , 2005, Biochimica et biophysica acta.

[25]  Koichi Akiyama,et al.  A Family of Basic Amino Acid Transporters of the Vacuolar Membrane from Saccharomyces cerevisiae* , 2005, Journal of Biological Chemistry.

[26]  Daniel J Klionsky,et al.  Development by self-digestion: molecular mechanisms and biological functions of autophagy. , 2004, Developmental cell.

[27]  H. Pelham,et al.  Bsd2 binds the ubiquitin ligase Rsp5 and mediates the ubiquitination of transmembrane proteins , 2004, The EMBO journal.

[28]  S. Emr,et al.  Vps27 recruits ESCRT machinery to endosomes during MVB sorting , 2003, The Journal of cell biology.

[29]  Chang‐Deng Hu,et al.  Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis , 2003, Nature Biotechnology.

[30]  W. B. Snyder,et al.  Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. , 2002, Developmental cell.

[31]  S. Emr,et al.  Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I , 2001, Cell.

[32]  S. Emr,et al.  Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes , 2001, Nature Cell Biology.

[33]  A. Amerik,et al.  The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. , 2000, Molecular biology of the cell.

[34]  D. Eide,et al.  Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae , 2000, The EMBO journal.

[35]  S. Emr,et al.  Mammalian Tumor Susceptibility Gene 101 (TSG101) and the Yeast Homologue, Vps23p, Both Function in Late Endosomal Trafficking , 2000, Traffic.

[36]  R. Piper,et al.  The Iron Transporter Fth1p Forms a Complex with the Fet5 Iron Oxidase and Resides on the Vacuolar Membrane* , 1999, The Journal of Biological Chemistry.

[37]  A. Amerik,et al.  The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. , 1999, Molecular biology of the cell.

[38]  S. Emr,et al.  The AP-3 complex: a coat of many colours. , 1998, Trends in cell biology.

[39]  C. Burd,et al.  Acidic Di-leucine Motif Essential for AP-3–dependent Sorting and Restriction of the Functional Specificity of the Vam3p Vacuolar t-SNARE , 1998, The Journal of cell biology.

[40]  T. Stevens,et al.  Retrograde Traffic Out of the Yeast Vacuole to the TGN Occurs via the Prevacuolar/Endosomal Compartment , 1998, The Journal of cell biology.

[41]  S. Emr,et al.  A Membrane Coat Complex Essential for Endosome-to-Golgi Retrograde Transport in Yeast , 1998, The Journal of cell biology.

[42]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[43]  S. Emr,et al.  A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. , 1997, Molecular biology of the cell.

[44]  S. Emr,et al.  A Multispecificity Syntaxin Homologue, Vam3p, Essential for Autophagic and Biosynthetic Protein Transport to the Vacuole , 1997, The Journal of cell biology.

[45]  C. Burd,et al.  A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast. , 1997, Molecular biology of the cell.

[46]  S. Emr,et al.  Endosomal transport function in yeast requires a novel AAA‐type ATPase, Vps4p , 1997, The EMBO journal.

[47]  S. Emr,et al.  Endosome to Golgi Retrieval of the Vacuolar Protein Sorting Receptor, Vps10p, Requires the Function of the VPS29, VPS30, and VPS35 Gene Products , 1997, The Journal of cell biology.

[48]  R. Klausner,et al.  A Permease-Oxidase Complex Involved in High-Affinity Iron Uptake in Yeast , 1996, Science.

[49]  Manuela Helmer-Citterich,et al.  Exploring the diversity of SPRY/B30.2-mediated interactions. , 2013, Trends in biochemical sciences.

[50]  D. Drubin,et al.  Clathrin-mediated endocytosis in budding yeast. , 2012, Trends in cell biology.