Characterization of quantum circulant networks having perfect state transfer

In this paper we answer the question of when circulant quantum spin networks with nearest-neighbor couplings can give perfect state transfer. The network is described by a circulant graph G, which is characterized by its circulant adjacency matrix A. Formally, we say that there exists a perfect state transfer (PST) between vertices $${a,b\in V(G)}$$ if |F(τ)ab| = 1, for some positive real number τ, where F(t) = exp(i At). Saxena et al. (Int J Quantum Inf 5:417–430, 2007) proved that |F(τ)aa| = 1 for some $${a\in V(G)}$$ and $${\tau\in \mathbb {R}^+}$$ if and only if all eigenvalues of G are integer (that is, the graph is integral). The integral circulant graph ICGn (D) has the vertex set Zn = {0, 1, 2, . . . , n − 1} and vertices a and b are adjacent if $${\gcd(a-b,n)\in D}$$ , where $${D \subseteq \{d : d \mid n, \ 1 \leq d < n\}}$$ . These graphs are highly symmetric and have important applications in chemical graph theory. We show that ICGn (D) has PST if and only if $${n\in 4\mathbb {N}}$$ and $${D=\widetilde{D_3} \cup D_2\cup 2D_2\cup 4D_2\cup \{n/2^a\}}$$ , where $${\widetilde{D_3}=\{d\in D\ |\ n/d\in 8\mathbb {N}\}, D_2= \{d\in D\ |\ n/d\in 8\mathbb {N}+4\}{\setminus}\{n/4\}}$$ and $${a\in\{1,2\}}$$ . We have thus answered the question of complete characterization of perfect state transfer in integral circulant graphs raised in Angeles-Canul et al. (Quantum Inf Comput 10(3&4):0325–0342, 2010). Furthermore, we also calculate perfect quantum communication distance (distance between vertices where PST occurs) and describe the spectra of integral circulant graphs having PST. We conclude by giving a closed form expression calculating the number of integral circulant graphs of a given order having PST.

[1]  Chris D. Godsil,et al.  Periodic Graphs , 2008, Electron. J. Comb..

[2]  Pedro Berrizbeitia,et al.  On cycles in the sequence of unitary Cayley graphs , 2004, Discret. Math..

[3]  C. Godsil,et al.  Quantum Networks on Cubelike Graphs , 2008, 0808.0510.

[4]  Matthew C. Russell,et al.  Perfect state transfer, integral circulants, and join of graphs , 2009, Quantum Inf. Comput..

[5]  Simone Severini,et al.  Quantum state transfer through a qubit network with energy shifts and fluctuations , 2009, 0904.4510.

[6]  Tehran Mathematics Perfect state transfer over distance-regular spin networks , 2008 .

[7]  Simone Severini,et al.  Parameters of Integral Circulant Graphs and Periodic Quantum Dynamics , 2007 .

[8]  Milan B. Tasic,et al.  Perfect state transfer in integral circulant graphs , 2009, Appl. Math. Lett..

[9]  Milan Basic,et al.  On the diameter of integral circulant graphs , 2012, Ars Comb..

[10]  Christino Tamon,et al.  On mixing in continuous-time quantum walks on some circulant graphs , 2003, Quantum Inf. Comput..

[11]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[12]  Torsten Sander,et al.  Some Properties of Unitary Cayley Graphs , 2007, Electron. J. Comb..

[13]  R. Norton,et al.  On quantum perfect state transfer in weighted join graphs , 2009 .

[14]  Douglas R. Stinson,et al.  Sequentially Perfect and Uniform One-Factorizations of the Complete Graph , 2005, Electron. J. Comb..

[15]  Matthias Christandl,et al.  Perfect state transfer in quantum spin networks. , 2004, Physical review letters.

[16]  M. A. Jafarizadeh,et al.  Perfect state transfer over distance-regular spin networks , 2007, 0709.0755.

[17]  Aleksandar Ilic,et al.  On the clique number of integral circulant graphs , 2009, Appl. Math. Lett..

[18]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[19]  Elena D. Fuchs Longest Induced Cycles in Circulant Graphs , 2005, Electron. J. Comb..

[20]  Milan Bavsi'c Which weighted circulant networks have perfect state transfer? , 2011 .

[21]  Wasin So,et al.  Integral circulant graphs , 2006, Discret. Math..

[22]  Matthias Christandl,et al.  Perfect Transfer of Arbitrary States in Quantum Spin Networks , 2005 .

[23]  Milan Basic,et al.  Further results on the perfect state transfer in integral circulant graphs , 2011, Comput. Math. Appl..

[24]  Milan B. Tasic,et al.  Some classes of integral circulant graphs either allowing or not allowing perfect state transfer , 2009, Appl. Math. Lett..

[25]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .