Optimal Stopping Games for Markov Processes

Let $X=(X_t)_{t \ge 0}$ be a strong Markov process, and let $G_1,\, G_2$, and $G_3$ be continuous functions satisfying $G_1 \le G_3 \le G_2$ and $\mathsf{E}_x\sup_t \vert G_i(X_t) \vert < \infty$ for $i=1,2,3$. Consider the optimal stopping game where the sup-player chooses a stopping time $\tau$ to maximize, and the inf-player chooses a stopping time $\sigma$ to minimize, the expected payoff $\mathsf{M}_x(\tau,\sigma) = \mathsf{E}_x [G_1(X_\tau)\;\! I(\tau\! <\! \sigma) + G_2(X_\sigma)\;\! I(\sigma\! <\! \tau) + G_3(X_\tau)\;\! I(\tau\! =\! \sigma)],$ where $X_0=x$ under $\mathsf{P}_{\!x}$. Define the upper value and the lower value of the game by $V^*(x) = \inf_\sigma \sup_\tau \mathsf{M}_x(\tau,\sigma)~{\rm and}~ V_*(x) = \sup_\tau \inf_\sigma \mathsf{M}_x(\tau,\sigma),$ respectively, where the horizon $T$ (the upper bound for $\tau$ and $\sigma$ above) may be either finite or infinite (it is assumed that $G_1(X_T)=G_2(X_T)$ if $T$ is finite and $\liminf_{t \rightarrow \infty} G_2(X_t) \le \limsup_{t \rightarrow \infty} G_1(X_t)$ if $T$ is infinite). If $X$ is right-continuous, then the Stackelberg equilibrium holds, in the sense that $V^*(x)=V_*(x)$ for all $x$ with $V:=V^*=V_*$ defining a measurable function. If $X$ is right-continuous and left-continuous over stopping times (quasi-left-continuous), then the Nash equilibrium holds, in the sense that there exist stopping times $\tau_*$ and $\sigma_*$ such that $\mathsf{M}_x(\tau,\sigma_*) \le \mathsf{M}_x(\tau_*,\sigma_*) \le \mathsf{M}_x(\tau_*,\sigma)$ for all stopping times $\tau$ and $\sigma$, implying also that $V(x)=\mathsf{M}_x(\tau_*,\sigma_*)$ for all $x$. Further properties of the value function $V$ and the optimal stopping times $\tau_*$ and $\sigma_*$ are exhibited in the proof.

[1]  A. Friedman Stochastic games and variational inequalities , 1973 .

[2]  Frederik Boetius,et al.  Bounded Variation Singular Stochastic Control and Dynkin Game , 2005, SIAM J. Control. Optim..

[3]  J. Snell Applications of martingale system theorems , 1952 .

[4]  Yuri Kifer,et al.  Game options , 2000, Finance Stochastics.

[5]  A. Bensoussan,et al.  Nonlinear variational inequalities and differential games with stopping times , 1974 .

[6]  E. Frid The Optimal Stopping Rule for a Two-Person Markov Chain with Opposing Interests , 1969 .

[7]  CALLABLE PUTS AS COMPOSITE EXOTIC OPTIONS , 2007 .

[8]  Yu. I. Kifer Optimal Stopping in Games with Continuous Time , 1971 .

[9]  Erik Ekstrom,et al.  On the value of optimal stopping games , 2006 .

[10]  Erik Ekström,et al.  Properties of game options , 2006, Math. Methods Oper. Res..

[11]  Yoshio Ohtsubo,et al.  Optimal Stopping in Sequential Games With or Without a Constraint of Always Terminating , 1986, Math. Oper. Res..

[12]  N. V. Elbakidze Construction of the Cost and Optimal Policies in a Game Problem of Stopping a Markov Process , 1976 .

[13]  Andreas E. Kyprianou,et al.  Some calculations for Israeli options , 2004, Finance Stochastics.

[14]  E. B. Dynkin,et al.  Game variant of a problem on optimal stopping , 1969 .

[15]  A. Kyprianou,et al.  Further calculations for Israeli options , 2004 .

[16]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal stopping rules , 1977 .

[17]  P. Moerbeke On optimal stopping and free boundary problems , 1973, Advances in Applied Probability.

[18]  P. Gapeev The spread option optimal stopping game , 2005 .

[19]  Ł. Stettner Zero-sum Markov games with stopping and impulsive strategies , 1982 .

[20]  Avner Friedman,et al.  Nonzero-sum stochastic differential games with stopping times and free boundary problems , 1977 .

[21]  J. Lepeltier,et al.  Le jeu de dynkin en theorie generale sans l'hypothese de mokobodski , 1984 .

[22]  Rida Laraki,et al.  The Value of Zero-Sum Stopping Games in Continuous Time , 2005, SIAM J. Control. Optim..

[23]  Wim Schoutens,et al.  Exotic Option Pricing and Advanced Lévy Models , 2005 .