BAYESIAN REFERENCE ANALYSIS OF COINTEGRATION

A Bayesian reference analysis of the cointegrated vector autoregression is presented based on a new prior distribution. Among other properties, it is shown that this prior distribution distributes its probability mass uniformly over all cointegration spaces for a given cointegration rank and is invariant to the choice of normalizing variables for the cointegration vectors. Several methods for computing the posterior distribution of the number of cointegrating relations and distribution of the model parameters for a given number of relations are proposed, including an efficient Gibbs sampling approach where all inferences are determined from the same posterior sample. Simulated data are used to illustrate the procedures and for discussing the well-known issue of local nonidentification.The author thanks Luc Bauwens, Anant Kshirsagar, Peter Phillips, Herman van Dijk, four anonymous referees, and especially Daniel Thorburn for helpful comments. Financial support from the Swedish Council of Research in Humanities and Social Sciences (HSFR) grant F0582/1999 and Swedish Research Council (Vetenskapsrådet) grant 412-2002-1007 is gratefully acknowledged. The views expressed in this paper are solely the responsibility of the author and should not be interpreted as reflecting the views of the Executive Board of Sveriges Riksbank.

[1]  T. Kloek,et al.  Bayesian estimates of equation system parameters, An application of integration by Monte Carlo , 1976 .

[2]  Jacques H. Dreze,et al.  Bayesian regression analysis using poly-t densities , 1977 .

[3]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[4]  M. Villani Bayesian point estimation of the cointegration space , 2006 .

[5]  A. Warne,et al.  Monetary Policy Analysis in a Small Open Economy Using Bayesian Cointegrated Structural Vars , 2003, SSRN Electronic Journal.

[6]  John C. Chao,et al.  Model selection in partially nonstationary vector autoregressive processes with reduced rank structure , 1999 .

[7]  S. Johansen Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models , 1991 .

[8]  Gregory C. Reinsel,et al.  Estimation for Partially Nonstationary Multivariate Autoregressive Models , 1990 .

[9]  P. Phillips Spherical matrix distributions and cauchy quotients , 1989 .

[10]  Richard Paap,et al.  Priors, posteriors and Bayes factors for a Bayesian analysis of cointegration , 1998 .

[11]  James M. Dickey,et al.  Matricvariate Generalizations of the Multivariate $t$ Distribution and the Inverted Multivariate $t$ Distribution , 1967 .

[12]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[13]  J. Geweke,et al.  Bayesian reduced rank regression in econometrics , 1996 .

[14]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[15]  A. James Normal Multivariate Analysis and the Orthogonal Group , 1954 .

[16]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[17]  L. Bauwens,et al.  A 1-1 poly-t Random variable generator with application to Monte Carlo integration , 1985 .

[18]  Peter C. B. Phillips,et al.  Optimal Inference in Cointegrated Systems , 1991 .

[19]  M. Villani Bayesian Inference of General Linear Restrictions on the Cointegration Space , 2007 .

[20]  Jukka Corander,et al.  Bayesian assessment of dimensionality in reduced rank regression , 2004 .

[21]  Peter C. B. Phillips,et al.  Some exact distribution theory for maximum likelihood estimators of cointegrating coefficients , 1994 .

[22]  Robert B. Litterman Forecasting with Bayesian Vector Autoregressions-Five Years of Experience , 1984 .

[23]  Robert B. Litterman,et al.  Forecasting and Conditional Projection Using Realistic Prior Distributions , 1983 .

[24]  H. Akaike A new look at the statistical model identification , 1974 .

[25]  J. Stock,et al.  Testing for Common Trends , 1988 .

[26]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[27]  Testing for a Valid Normalization of Cointegrating Vectors in Vector Autoregressive Processes , 1999 .

[28]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[29]  Peter C. B. Phillips,et al.  Econometric Model Determination , 1996 .

[30]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[31]  C. Granger,et al.  Co-integration and error correction: representation, estimation and testing , 1987 .

[32]  Luc Bauwens,et al.  Bayesian Inference in Dynamic Econometric Models , 2000 .

[33]  Herman K. van Dijk,et al.  On the Shape of the Likelihood/Posterior in Cointegration Models , 1994, Econometric Theory.

[34]  J. Dickey Three Multidimensional-integral Identities with Bayesian Applications , 1968 .

[35]  Pierre Giot,et al.  A Gibbs sampling approach to cointegration , 1998 .

[36]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[37]  Luc Bauwens,et al.  Identification restrictions and posterior densities in cointegrated Gaussian VAR system , 1996 .

[38]  Anders Warne,et al.  Bayesian Inference in Cointegrated VAR Models: With Applications to the Demand for Euro Area M3 , 2006, SSRN Electronic Journal.

[39]  Herman K. van Dijk,et al.  Bayesian limited information analysis revisited , 1990 .

[40]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[41]  Jacques H. Dreze,et al.  BAYESIAN ANALYSIS OF SIMULTANEOUS EQUATION SYSTEMS , 1983 .

[42]  Felix Schlenk,et al.  Proof of Theorem 3 , 2005 .

[43]  M. Villani Fractional Bayesian Lag Length Inference in Multivariate Autoregressive Processes , 2001 .

[44]  Mattias Villani,et al.  Bayesian prediction with cointegrated vector autoregressions , 2001 .

[45]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[46]  D. Hendry,et al.  Co-Integration and Error Correction : Representation , Estimation , and Testing , 2007 .

[47]  J. Dickey Smoothed Estimates for Multinomial Cell Probabilities , 1968 .

[48]  Rodney W. Strachan Valid Bayesian Estimation of the Cointegrating Error Correction Model , 2003 .