On the Time–Space Complexity of Geometric Elimination Procedures
暂无分享,去创建一个
[1] Patrizia M. Gianni,et al. Algebraic Solution of Systems of Polynomial Equations Using Groebner Bases , 1987, AAECC.
[2] George E. Collins,et al. Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.
[3] D. Faddeev,et al. Computational methods of linear algebra , 1959 .
[4] Noaï Fitchas,et al. Nullstellensatz effectif et Conjecture de Serre (Théorème de Quillen‐Suslin) pour le Calcul Formel , 1990 .
[5] Marc Giusti,et al. Lower bounds for diophantine approximations , 1997 .
[6] Joos Heintz. On the Computational Complexity of Polynomials and Bilinear Mappings. A Survey , 1987, AAECC.
[7] B. Bank,et al. Polar varieties and efficient real elimination , 2000 .
[8] J. E. Morais,et al. On the intrinsic complexity of the arithmetic Nullstellensatz , 2000 .
[9] Guillermo Matera. Sobre la complejidad en espacio y tiempo de la eliminación geométrica , 1997 .
[10] Marc Giusti,et al. A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..
[11] Juan Rafael Sendra Pons. Algoritmos simbólicos de Hankel en álgebra computacional , 1990 .
[12] Klemens Haegele Hans. Intrinsic height estimates for the nullstellensatz , 1998 .
[13] Guillermo Matera,et al. Probabilistic Algorithms for Geometric Elimination , 1999, Applicable Algebra in Engineering, Communication and Computing.
[14] J. E. Morais,et al. Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.
[15] Teresa Krick,et al. A computational method for diophantine approximation , 1996 .
[16] L. Roth. Algebraic Surfaces , 1950, Nature.
[17] bitnetJoos Heintz,et al. La D Etermination Des Points Isol Es Et De La Dimension D'une Vari Et E Alg Ebrique Peut Se Faire En Temps Polynomial , 1991 .
[18] José Enrique Morais San Miguel. Resolución eficaz de sistemas de ecuaciones polinomiales , 1998 .
[19] Ernst W. Mayr,et al. Exponential space computation of Gröbner bases , 1996, ISSAC '96.
[20] Hans-Jörg Stoß. Lower Bounds for the Complexity of Polynomials , 1989, Theor. Comput. Sci..
[21] Jacob T. Schwartz,et al. Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.
[22] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[23] F. S. Macaulay,et al. The Algebraic Theory of Modular Systems , 1972 .
[24] Philip Wadler,et al. Deforestation: Transforming Programs to Eliminate Trees , 1990, Theor. Comput. Sci..
[25] K. Ramachandra,et al. Vermeidung von Divisionen. , 1973 .
[26] Allan Borodin,et al. Time Space Tradeoffs (Getting Closer to the Barrier?) , 1993, ISAAC.
[27] Allan Borodin,et al. The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.
[28] Marc Giusti,et al. Polar Varieties, Real Equation Solving, and Data Structures: The Hypersurface Case , 1997, J. Complex..
[29] Fabrice Rouillier,et al. Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.
[30] Richard Zippel,et al. Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.
[31] Teresa Krick,et al. UNE APPROCHE INFORMATIQUE POUR L'APPROXIMATION DIOPHANTIENNE , 1994 .
[32] Tetsuro Fujise,et al. Solving Systems of Algebraic Equations by a General Elimination Method , 1988, J. Symb. Comput..
[33] Arnold Schönhage,et al. Fast algorithms - a multitape Turing machine implementation , 1994 .
[34] J. M Varah,et al. Computational methods in linear algebra , 1984 .
[35] Allan Borodin,et al. On Relating Time and Space to Size and Depth , 1977, SIAM J. Comput..
[36] Ernst W. Mayr,et al. Membership in Plynomial Ideals over Q Is Exponential Space Complete , 1989, STACS.
[37] Kyriakos Kalorkoti. ALGEBRAIC COMPLEXITY THEORY (Grundlehren der Mathematischen Wissenschaften 315) , 1999 .
[38] Marie-Françoise Roy,et al. Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .
[39] J. Rafael Sendra,et al. An Extended Polynomial GCD Algorithm Using Hankel Matrices , 1992, J. Symb. Comput..
[40] Joos Heintz,et al. Deformation Techniques for Efficient Polynomial Equation Solving , 2000, J. Complex..
[41] G. A. Dirac,et al. Moderne Algebra. I , 1951 .
[42] Martín Sombra. Estimaciones para el Teorema de Ceros de Hilbert , 1998 .
[43] B. Buchberger,et al. Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .
[44] Fabrice Rouillier,et al. Symbolic Recipes for Polynomial System Solving , 1999 .
[45] J. E. Morais,et al. Lower Bounds for diophantine Approximation , 1996 .
[46] John F. Canny,et al. Some algebraic and geometric computations in PSPACE , 1988, STOC '88.
[47] Joseph JáJá. Time-Space trade-offs for some algebraic problems , 1983, JACM.
[48] Joseph JáJá,et al. Time-space tradeoffs for some algebraic problems , 1980, STOC '80.
[49] Marc Giusti,et al. The Projective Noether Maple Package: Computing the Dimension of a Projective Variety , 2000, J. Symb. Comput..
[50] Richard Zippel,et al. Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.
[51] Erich Kaltofen. Asymptotically fast solution of Toeplitz-like singular linear systems , 1994, ISSAC '94.
[52] Joachim von zur Gathen,et al. Parallel Arithmetic Computations: A Survey , 1986, MFCS.
[53] André Galligo,et al. Some New Effectivity Bounds in Computational Geometry , 1988, AAECC.
[54] Luis M. Pardo,et al. How Lower and Upper Complexity Bounds Meet in Elimination Theory , 1995, AAECC.
[55] V. Pan,et al. Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.
[56] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[57] J. E. Morais,et al. When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.
[58] Marc Giusti,et al. Le rôle des structures de données dans les problèmes d'élimination , 1997 .
[59] Volker Strassen,et al. Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[60] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[61] Jounaïdi Abdeljaoued. Algorithmes rapides pour le calcul du polynome caracteristique , 1997 .
[62] W. Brownawell. Bounds for the degrees in the Nullstellensatz , 1987 .
[63] Journal of the Association for Computing Machinery , 1961, Nature.
[64] Alicia Dickenstein,et al. The membership problem for unmixed polynomial ideals is solvable in single exponential time , 1991, Discret. Appl. Math..