Termination and antitermination: RNA polymerase runs a stop sign

[1]  Robert Landick,et al.  Bacterial transcription terminators: the RNA 3'-end chronicles. , 2011, Journal of molecular biology.

[2]  Patrick Cramer,et al.  Architecture of the RNA polymerase–Spt4/5 complex and basis of universal transcription processivity , 2011, The EMBO journal.

[3]  F. Werner,et al.  Evolution of multisubunit RNA polymerases in the three domains of life , 2011, Nature Reviews Microbiology.

[4]  E. Margeat,et al.  Mutagenesis-based evidence for an asymmetric configuration of the ring-shaped transcription termination factor Rho. , 2011, Journal of molecular biology.

[5]  R. Sen,et al.  Interaction surface of the transcription terminator Rho required to form a complex with the C-terminal domain of the antiterminator NusG. , 2011, Journal of molecular biology.

[6]  K. Murakami,et al.  RNA polymerase and transcription elongation factor Spt4/5 complex structure , 2010, Proceedings of the National Academy of Sciences.

[7]  M. Gottesman,et al.  Transcription termination maintains chromosome integrity , 2010, Proceedings of the National Academy of Sciences.

[8]  P. Gollnick,et al.  TRAP binding to the Bacillus subtilis trp leader region RNA causes efficient transcription termination at a weak intrinsic terminator , 2010, Nucleic acids research.

[9]  K. Severinov,et al.  RNA remodeling and gene regulation by cold shock proteins , 2010, RNA biology.

[10]  D. Vassylyev,et al.  The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. , 2010, Journal of molecular biology.

[11]  E. Groisman,et al.  A Bacterial mRNA Leader that Employs Different Mechanisms to Sense Disparate Intracellular Signals , 2010, Cell.

[12]  I. Artsimovitch,et al.  Functional analysis of Thermus thermophilus transcription factor NusG , 2010, Nucleic acids research.

[13]  Irnov Irnov,et al.  A regulatory RNA required for antitermination of biofilm and capsular polysaccharide operons in Bacillales , 2010, Molecular microbiology.

[14]  Björn M. Burmann,et al.  A NusE:NusG Complex Links Transcription and Translation , 2010, Science.

[15]  G. Dougan,et al.  Cooperation Between Translating Ribosomes and RNA Polymerase in Transcription Elongation , 2010, Science.

[16]  I. Artsimovitch,et al.  Functional regions of the N-terminal domain of the antiterminator RfaH , 2010, Molecular microbiology.

[17]  Andrew C. R. Martin,et al.  Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif , 2010, Nucleic acids research.

[18]  T. Henkin,et al.  The T box mechanism: tRNA as a regulatory molecule , 2010, FEBS letters.

[19]  Vitaly Epshtein,et al.  An allosteric mechanism of Rho-dependent transcription termination , 2010, Nature.

[20]  T. Henkin,et al.  Riboswitch RNAs: Regulation of gene expression by direct monitoring of a physiological signal , 2010, RNA biology.

[21]  J. Berger,et al.  Running in Reverse: The Structural Basis for Translocation Polarity in Hexameric Helicases , 2009, Cell.

[22]  J. Reeve,et al.  Archaeal Intrinsic Transcription Termination In Vivo , 2009, Journal of bacteriology.

[23]  Pei Fen Kuan,et al.  Rho directs widespread termination of intragenic and stable RNA transcription , 2009, Proceedings of the National Academy of Sciences.

[24]  R. Landick,et al.  Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. , 2009, Journal of molecular biology.

[25]  A. Nussbaum-Shochat,et al.  Modulation of transcription antitermination in the bgl operon of Escherichia coli by the PTS , 2009, Proceedings of the National Academy of Sciences.

[26]  P. Cramer,et al.  Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. , 2009, Molecular cell.

[27]  E. Nudler RNA polymerase active center: the molecular engine of transcription. , 2009, Annual review of biochemistry.

[28]  W. Winkler,et al.  Multiple posttranscriptional regulatory mechanisms partner to control ethanolamine utilization in Enterococcus faecalis , 2009, Proceedings of the National Academy of Sciences.

[29]  R. Landick,et al.  Functional specialization of transcription elongation factors , 2009, The EMBO journal.

[30]  A. Ansari,et al.  Regulator trafficking on bacterial transcription units in vivo. , 2009, Molecular cell.

[31]  T. Henkin Riboswitch RNAs: using RNA to sense cellular metabolism. , 2008, Genes & development.

[32]  Terence Hwa,et al.  Stochasticity and traffic jams in the transcription of ribosomal RNA: Intriguing role of termination and antitermination , 2008, Proceedings of the National Academy of Sciences.

[33]  S. Aymerich,et al.  Structural Mechanism of Signal Transduction between the RNA-binding Domain and the Phosphotransferase System Regulation Domain of the LicT Antiterminator* , 2008, Journal of Biological Chemistry.

[34]  A. Hochschild,et al.  The bacteriophage λ Q antiterminator protein contacts the β-flap domain of RNA polymerase , 2008, Proceedings of the National Academy of Sciences.

[35]  R. Weisberg,et al.  Inhibition of a transcriptional pause by RNA anchoring to RNA polymerase. , 2008, Molecular cell.

[36]  Evgeny Nudler,et al.  Termination Factor Rho and Its Cofactors NusA and NusG Silence Foreign DNA in E. coli , 2008, Science.

[37]  R. Montange,et al.  Riboswitches: emerging themes in RNA structure and function. , 2008, Annual review of biophysics.

[38]  S. Gopinath,et al.  Insights into anti-termination regulation of the hut operon in Bacillus subtilis: importance of the dual RNA-binding surfaces of HutP , 2008, Nucleic acids research.

[39]  Steven M. Block,et al.  Applied Force Reveals Mechanistic and Energetic Details of Transcription Termination , 2008, Cell.

[40]  P. V. von Hippel,et al.  Direct Spectroscopic Study of Reconstituted Transcription Complexes Reveals That Intrinsic Termination Is Driven Primarily by Thermodynamic Destabilization of the Nucleic Acid Framework* , 2008, Journal of Biological Chemistry.

[41]  D. Vassylyev,et al.  The elongation factor RfaH and the initiation factor σ bind to the same site on the transcription elongation complex , 2008, Proceedings of the National Academy of Sciences.

[42]  H. Atomi,et al.  Polarity in Archaeal Operon Transcription in Thermococcus kodakaraensis , 2008, Journal of bacteriology.

[43]  Yulia Yuzenkova,et al.  Mapping of RNA polymerase residues that interact with bacteriophage Xp10 transcription antitermination factor p7. , 2008, Journal of molecular biology.

[44]  E. Nudler,et al.  An allosteric path to transcription termination. , 2007, Molecular cell.

[45]  Jeffrey W. Roberts,et al.  A transcription antiterminator constructs a NusA-dependent shield to the emerging transcript. , 2007, Molecular cell.

[46]  M. Kaczanowska,et al.  Ribosome Biogenesis and the Translation Process in Escherichia coli , 2007, Microbiology and Molecular Biology Reviews.

[47]  D. Vassylyev,et al.  Allosteric control of the RNA polymerase by the elongation factor RfaH , 2007, Nucleic acids research.

[48]  P. Gutiérrez,et al.  Solution Structure of YaeO, a Rho-specific Inhibitor of Transcription Termination* , 2007, Journal of Biological Chemistry.

[49]  Robert Landick,et al.  A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. , 2007, Molecular cell.

[50]  Nick V Grishin,et al.  Structural basis for converting a general transcription factor into an operon-specific virulence regulator. , 2007, Molecular cell.

[51]  J. Reeve,et al.  Transcription and translation are coupled in Archaea. , 2007, Molecular biology and evolution.

[52]  C. Yanofsky,et al.  Ribosome Recycling Factor and Release Factor 3 Action Promotes TnaC-Peptidyl-tRNA Dropoff and Relieves Ribosome Stalling during Tryptophan Induction of tna Operon Expression in Escherichia coli , 2007, Journal of bacteriology.

[53]  R. Weisberg,et al.  Protection of antiterminator RNA by the transcript elongation complex , 2007, Molecular microbiology.

[54]  Sharmistha Banerjee,et al.  Mechanism of Inhibition of Rho-dependent Transcription Termination by Bacteriophage P4 Protein Psu* , 2006, Journal of Biological Chemistry.

[55]  M. Ciampi,et al.  Rho-dependent terminators and transcription termination. , 2006, Microbiology.

[56]  Jeffrey W. Roberts,et al.  Role of DNA bubble rewinding in enzymatic transcription termination. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  P. V. von Hippel,et al.  Assembly of an RNA-Protein Complex , 2005, Journal of Biological Chemistry.

[58]  I. Artsimovitch,et al.  Transcriptional pausing in vivo: a nascent RNA hairpin restricts lateral movements of RNA polymerase in both forward and reverse directions. , 2005, Journal of molecular biology.

[59]  C. Yanofsky,et al.  Transcription attenuation: a highly conserved regulatory strategy used by bacteria. , 2005, Trends in genetics : TIG.

[60]  O. Amster-Choder The bgl sensory system: a transmembrane signaling pathway controlling transcriptional antitermination. , 2005, Current opinion in microbiology.

[61]  Hiroshi Mizuno,et al.  Structural basis of HutP-mediated anti-termination and roles of the Mg2+ ion and L-histidine ligand , 2005, Nature.

[62]  R. Weisberg,et al.  A conserved zinc binding domain in the largest subunit of DNA-dependent RNA polymerase modulates intrinsic transcription termination and antitermination but does not stabilize the elongation complex. , 2004, Journal of molecular biology.

[63]  A. Rahmouni,et al.  Dual role of boxB RNA motif in the mechanisms of termination/antitermination at the lambda tR1 terminator revealed in vivo. , 2004, Journal of molecular biology.

[64]  Jeffrey W. Roberts,et al.  Forward translocation is the natural pathway of RNA release at an intrinsic terminator. , 2004, Molecular cell.

[65]  J. Stülke,et al.  Control of the Bacillus subtilis Antiterminator Protein GlcT by Phosphorylation , 2003, Journal of Biological Chemistry.

[66]  J. Gowrishankar,et al.  Host factor titration by chromosomal R-loops as a mechanism for runaway plasmid replication in transcription termination-defective mutants of Escherichia coli. , 2003, Journal of molecular biology.

[67]  Ali Nahvi,et al.  An mRNA structure that controls gene expression by binding S-adenosylmethionine , 2003, Nature Structural Biology.

[68]  Vitaly Epshtein,et al.  The riboswitch-mediated control of sulfur metabolism in bacteria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  T. Henkin,et al.  Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[70]  R. Breaker,et al.  An mRNA structure that controls gene expression by binding FMN , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  M. Kashlev,et al.  Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination. , 2002, Molecular cell.

[72]  Jeffrey W. Roberts,et al.  The σ70 Subunit of RNA Polymerase Is Contacted by the λQ Antiterminator during Early Elongation , 2002 .

[73]  T. Henkin,et al.  tRNA-mediated transcription antitermination in vitro: Codon–anticodon pairing independent of the ribosome , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[74]  C. Yanofsky,et al.  Analysis of Tryptophanase Operon Expression in Vitro , 2002, The Journal of Biological Chemistry.

[75]  R. Landick,et al.  The Transcriptional Regulator RfaH Stimulates RNA Chain Synthesis after Recruitment to Elongation Complexes by the Exposed Nontemplate DNA Strand , 2002, Cell.

[76]  Patrick Cramer,et al.  Multisubunit RNA polymerases. , 2002, Current opinion in structural biology.

[77]  H. van Tilbeurgh,et al.  Structural insights into the regulation of bacterial signalling proteins containing PRDs. , 2001, Current opinion in structural biology.

[78]  E. Nudler,et al.  Control of Intrinsic Transcription Termination by N and NusA The Basic Mechanisms , 2001, Cell.

[79]  C. Condon,et al.  Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both non‐ribosomal and ribosomal RNA antitermination , 2001, The EMBO journal.

[80]  R. Weisberg,et al.  Modification of the properties of elongating RNA polymerase by persistent association with nascent antiterminator RNA. , 2001, Molecular cell.

[81]  R. Landick,et al.  Allosteric Control of RNA Polymerase by a Site That Contacts Nascent RNA Hairpins , 2001, Science.

[82]  R. Landick,et al.  Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[83]  V. Stewart,et al.  RNA sequence requirements for NasR-mediated, nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader. , 1999, Journal of molecular biology.

[84]  Jeffrey W. Roberts,et al.  Mechanism of intrinsic transcription termination and antitermination. , 1999, Science.

[85]  E. Nudler,et al.  The mechanism of intrinsic transcription termination. , 1999, Molecular cell.

[86]  R. Landick,et al.  Interaction of a nascent RNA structure with RNA polymerase is required for hairpin-dependent transcriptional pausing but not for transcript release. , 1998, Genes & development.

[87]  Irina Artsimovitch,et al.  Information Processing by RNA Polymerase: Recognition of Regulatory Signals during RNA Chain Elongation , 1998, Journal of bacteriology.

[88]  M. Kashlev,et al.  Crucial role of the RNA:DNA hybrid in the processivity of transcription. , 1998, Molecules and Cells.

[89]  M. J. Bailey,et al.  RfaH and the ops element, components of a novel system controlling bacterial transcription elongation , 1997, Molecular microbiology.

[90]  P. V. von Hippel,et al.  Regulation of the elongation-termination decision at intrinsic terminators by antitermination protein N of phage lambda. , 1997, Journal of molecular biology.

[91]  M. Kashlev,et al.  RNA Polymerase Switches between Inactivated and Activated States By Translocating Back and Forth along the DNA and the RNA* , 1997, The Journal of Biological Chemistry.

[92]  Jeffrey W. Roberts,et al.  Function of E. coli RNA Polymerase σ Factor- σ70 in Promoter-Proximal Pausing , 1996, Cell.

[93]  V. Markovtsov,et al.  Transcription Processivity: Protein-DNA Interactions Holding Together the Elongation Complex , 1996, Science.

[94]  H. Bremer,et al.  Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. , 1996, Journal of molecular biology.

[95]  P. V. von Hippel,et al.  Bacteriophage lambda N protein alone can induce transcription antitermination in vitro. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Steven M. Block,et al.  Transcription Against an Applied Force , 1995, Science.

[97]  C. Condon,et al.  Control of rRNA transcription in Escherichia coli. , 1995, Microbiological reviews.

[98]  J. Greenblatt,et al.  A protein-RNA interaction network facilitates the template-independent cooperative assembly on RNA polymerase of a stable antitermination complex containing the lambda N protein. , 1995, Genes & development.

[99]  C. Burns,et al.  NusG is required to overcome a kinetic limitation to Rho function at an intragenic terminator. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[100]  T. Platt,et al.  Evidence supporting a tethered tracking model for helicase activity of Escherichia coli Rho factor. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[101]  T. Henkin,et al.  tRNA as a positive regulator of transcription antitermination in B. subtilis , 1993, Cell.

[102]  M. Gottesman,et al.  Requirement for E. coli NusG protein in factor-dependent transcription termination , 1992, Cell.

[103]  S. Barik,et al.  An antitermination protein engages the elongating transcription apparatus at a promoter-proximal recognition site , 1987, Cell.

[104]  M. Chamberlin,et al.  nusA protein of Escherichia coli is an efficient transcription termination factor for certain terminator sites. , 1987, Journal of molecular biology.

[105]  C. Yanofsky,et al.  Rho-dependent transcription termination in the tryptophanase operon leader region of Escherichia coli K-12 , 1986, Journal of bacteriology.

[106]  C. Yanofsky,et al.  Translation activates the paused transcription complex and restores transcription of the trp operon leader region. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[107]  E. Zaychikov,et al.  Oligonucleotides complementary to a promoter over the region -8...+2 as transcription primers for E. coli RNA polymerase. , 1984, Nucleic acids research.

[108]  P. V. von Hippel,et al.  Specificity of release by Escherichia coli transcription termination factor rho of nascent mRNA transcripts initiated at the lambda PR. , 1984, The Journal of biological chemistry.

[109]  C. Yanofsky Attenuation in the control of expression of bacterial operons , 1981, Nature.

[110]  Basic mechanisms , 1976 .

[111]  J. Richardson,et al.  Transcription termination factor rho activity is altered in Escherichia coli with suA gene mutations. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[112]  C. A. Thomas,et al.  Visualization of Bacterial Genes in Action , 1970, Science.

[113]  Jeffrey W. Roberts Termination Factor for RNA Synthesis , 1969, Nature.

[114]  R. Breaker,et al.  Adenine riboswitches and gene activation by disruption of a transcription terminator , 2004, Nature Structural &Molecular Biology.

[115]  M. Bailey,et al.  In vitro recruitment of the RfaH regulatory protein into a specialised transcription complex, directed by the nucleic acid ops element , 2000, Molecular and General Genetics MGG.

[116]  Jeffrey W. Roberts,et al.  Antitermination by bacteriophage lambda Q protein. , 1998, Cold Spring Harbor symposia on quantitative biology.

[117]  F. Neidhart Escherichia coli and Salmonella. , 1996 .

[118]  A. Campbell Comparative molecular biology of lambdoid phages. , 1994, Annual review of microbiology.