Damage and Failure Analysis based on Peridynamics - Theory and Applications ∗

In this paper we give an overview over a recent non-local formulation of continuum mechanics called the Peridynamic theory in contrast to related non-local theories in the literature. The Peridynamic approach is fundamentally different as it avoids using any spatial derivatives which arise naturally when formulating balance laws in the classical, local theory. Motivated by molecular dynamics the differential operator in the equation of motion is replaced with an integral operator which can be applied to both continuous and discontinuous fields. By comparing the elastic energy density associated with homogeneous deformations in Peridynamics to the corresponding energy in classical elasticity we show how the connection to experimentally measurable material properties such as the Young’s modulus and the Poisson ratio can be established. This is done by expressing the elastic energy in Peridynamics as a function of the invariants of the strain tensor, a rigorously approach not previously published. The paper concludes with an example of a crack turning in a 3D isotropic material, illustrating the strength of the Peridynamic formulation in problems where the crack path is not known in advance.

[1]  Jifeng Xu,et al.  Peridynamic analysis of damage and failure in composites. , 2006 .

[2]  A. Cemal Eringen,et al.  Vistas of nonlocal continuum physics , 1992 .

[3]  S. Silling,et al.  Peridynamic modeling of membranes and fibers , 2004 .

[4]  Markus Zimmermann,et al.  A continuum theory with long-range forces for solids , 2005 .

[5]  A. R. Humphries,et al.  Dynamical Systems And Numerical Analysis , 1996 .

[6]  P. Fuschi,et al.  Closed form solution for a nonlocal elastic bar in tension , 2003 .

[7]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[8]  Lev Truskinovsky,et al.  Mechanics of a discrete chain with bi-stable elements , 2000 .

[9]  Nicolas Sau,et al.  Peridynamic modeling of concrete structures , 2007 .

[10]  Etienne Emmrich,et al.  Gewöhnliche und Operator-Differentialgleichungen , 2004 .

[11]  V. Lakshmikantham,et al.  Theory of Integro-Differential Equations , 1995 .

[12]  Stewart Andrew Silling,et al.  Peridynamic Modeling of Impact Damage , 2004 .

[13]  Osama J. Aldraihem,et al.  Exact deflection solutions of beams with shear piezoelectric actuators , 2003 .

[14]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[15]  Olaf Weckner,et al.  The effect of long-range forces on the dynamics of a bar , 2005 .

[16]  F. Legoll,et al.  Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics , 2005 .

[17]  Chuan Miao Chen,et al.  Finite Element Methods for Integrodifferential Equations , 1998 .

[18]  Shaker A. Meguid,et al.  Nonlinear analysis of functionally graded plates and shallow shells , 2001 .

[19]  A. Eskandarian,et al.  Dynamic meshless method applied to nonlocal crack problems , 2002 .

[20]  Kaushik Bhattacharya,et al.  Kinetics of phase transformations in the peridynamic formulation of continuum mechanics , 2006 .

[21]  E. Emmrich,et al.  Analysis and Numerical Approximation of an Integro-differential Equation Modeling Non-local Effects in Linear Elasticity , 2007 .

[22]  E. Kröner,et al.  Elasticity theory of materials with long range cohesive forces , 1967 .

[23]  Sondipon Adhikari,et al.  A Galerkin method for distributed systems with non-local damping , 2006 .

[24]  R. Kress Linear Integral Equations , 1989 .

[25]  E. Emmrich,et al.  NUMERICAL SIMULATION OF THE DYNAMICS OF A NONLOCAL, INHOMOGENEOUS, INFINITE BAR , 2005 .

[26]  Jun Wang,et al.  UNIQUENESS IN GENERALIZED NONLOCAL THERMOELASTICITY , 1993 .

[27]  Michael Griebel,et al.  Derivation of Higher Order Gradient Continuum Models from Atomistic Models for Crystalline Solids , 2005, Multiscale Model. Simul..

[28]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[29]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[30]  Tamar Schlick,et al.  A Family of Symplectic Integrators: Stability, Accuracy, and Molecular Dynamics Applications , 1997, SIAM J. Sci. Comput..

[31]  J. Appell,et al.  Partial integral operators and integro-differential equations , 2000 .

[32]  S. Silling,et al.  Peridynamic modeling of plain and reinforced concrete structures. , 2005 .

[33]  B. Altan,et al.  UNIQUENESS IN NONLOCAL THERMOELASTICITY , 1991 .

[34]  S. Altan,et al.  Uniqueness of initial-boundary value problems in nonlocal elasticity , 1989 .

[35]  Stewart Andrew Silling,et al.  Dynamic fracture modeling with a meshfree peridynamic code , 2003 .

[36]  Michael Griebel,et al.  Meshfree Methods for Partial Differential Equations , 2002 .

[37]  Michael Griebel,et al.  Meshfree Methods for Partial Differential Equations IV , 2005 .

[38]  Andrew Granville,et al.  It is easy to determine whether a given integer is prime , 2004 .

[39]  Castrenze Polizzotto,et al.  Nonlocal elasticity and related variational principles , 2001 .

[40]  Wang Jun,et al.  On some theorems in the nonlocal theory of micropolar elasticity , 1993 .

[41]  Kendall E. Atkinson,et al.  A Survey of Numerical Methods for Solving Nonlinear Integral Equations , 1992 .

[42]  Pierre-Louis Lions,et al.  From atoms to crystals: a mathematical journey , 2005 .

[43]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[44]  Dominik Rogula,et al.  Nonlocal theory of material media , 1982 .

[45]  Azim Eskandarian,et al.  Atomistic viewpoint of the applicability of microcontinuum theories , 2004 .

[46]  S. Silling,et al.  Peridynamic 3D models of nanofiber networks and carbon nanotube‐reinforced composites , 2004 .

[47]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[48]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[49]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[50]  I. Kunin,et al.  Elastic Media with Microstructure II , 1982 .

[51]  P. P. Zabrejko,et al.  Partial Integral Operators and Integro-Differential Equations : Pure and Applied Mathematics , 2000 .

[52]  K. Graff Wave Motion in Elastic Solids , 1975 .

[53]  S. Silling,et al.  Deformation of a Peridynamic Bar , 2003 .