Membrane Fusion: Grappling with SNARE and SM Proteins

The two universally required components of the intracellular membrane fusion machinery, SNARE and SM (Sec1/Munc18-like) proteins, play complementary roles in fusion. Vesicular and target membrane–localized SNARE proteins zipper up into an α-helical bundle that pulls the two membranes tightly together to exert the force required for fusion. SM proteins, shaped like clasps, bind to trans-SNARE complexes to direct their fusogenic action. Individual fusion reactions are executed by distinct combinations of SNARE and SM proteins to ensure specificity, and are controlled by regulators that embed the SM-SNARE fusion machinery into a physiological context. This regulation is spectacularly apparent in the exquisite speed and precision of synaptic exocytosis, where synaptotagmin (the calcium-ion sensor for fusion) cooperates with complexin (the clamp activator) to control the precisely timed release of neurotransmitters that initiates synaptic transmission and underlies brain function.

[1]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[2]  J. Rothman,et al.  Alternative Zippering as an On-Off Switch for SNARE-Mediated Fusion , 2009, Science.

[3]  T. Südhof,et al.  Complexin Controls the Force Transfer from SNARE Complexes to Membranes in Fusion , 2009, Science.

[4]  Christian Rosenmund,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to 12 Tables S1 and S2 References and Notes Conformational Switch of Syntaxin-1 Controls Synaptic Vesicle Fusion , 2022 .

[5]  J. Rizo,et al.  Synaptic vesicle fusion , 2008, Nature Structural &Molecular Biology.

[6]  David Tareste,et al.  SNAREpin/Munc18 promotes adhesion and fusion of large vesicles to giant membranes , 2008, Proceedings of the National Academy of Sciences.

[7]  J. Littleton,et al.  A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth , 2007, Nature Neuroscience.

[8]  J. Rothman,et al.  Energetics and dynamics of SNAREpin folding across lipid bilayers , 2007, Nature Structural &Molecular Biology.

[9]  S. Munro,et al.  An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. , 2007, Molecular biology of the cell.

[10]  W. Wickner,et al.  Distinct Targeting and Fusion Functions of the PX and SNARE Domains of Yeast Vacuolar Vam7p* , 2007, Journal of Biological Chemistry.

[11]  T. Südhof,et al.  Munc18-1 binds directly to the neuronal SNARE complex , 2007, Proceedings of the National Academy of Sciences.

[12]  J. Rothman,et al.  Selective Activation of Cognate SNAREpins by Sec1/Munc18 Proteins , 2007, Cell.

[13]  T. Ha,et al.  Multiple intermediates in SNARE-induced membrane fusion , 2006, Proceedings of the National Academy of Sciences.

[14]  T. Südhof,et al.  A Gain-of-Function Mutation in Synaptotagmin-1 Reveals a Critical Role of Ca2+-Dependent Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor Complex Binding in Synaptic Exocytosis , 2006, The Journal of Neuroscience.

[15]  Thomas C. Südhof,et al.  A Complexin/Synaptotagmin 1 Switch Controls Fast Synaptic Vesicle Exocytosis , 2006, Cell.

[16]  J. Rothman,et al.  A Clamping Mechanism Involved in SNARE-Dependent Exocytosis , 2006, Science.

[17]  Y. Shin,et al.  Hemifusion arrest by complexin is relieved by Ca2+–synaptotagmin I , 2006, Nature Structural &Molecular Biology.

[18]  Demet Araç,et al.  Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. , 2006, Trends in cell biology.

[19]  T. Südhof,et al.  Structural Determinants of Synaptobrevin 2 Function in Synaptic Vesicle Fusion , 2006, The Journal of Neuroscience.

[20]  Kevin M. Collins,et al.  Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p , 2006, The EMBO journal.

[21]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[22]  A. Brunger,et al.  Single molecule observation of liposome-bilayer fusion thermally induced by soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs). , 2004, Biophysical journal.

[23]  G. Melikyan,et al.  The Energetics of Membrane Fusion from Binding, through Hemifusion, Pore Formation, and Pore Enlargement , 2004, The Journal of Membrane Biology.

[24]  T. Südhof,et al.  How Tlg2p/syntaxin 16 'snares’ Vps45 , 2002, The EMBO journal.

[25]  T. Südhof,et al.  Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. , 2002, Developmental cell.

[26]  T. Südhof,et al.  Three-Dimensional Structure of the Complexin/SNARE Complex , 2002, Neuron.

[27]  T. Südhof,et al.  Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain Synaptotagmin 1 as a Phospholipid Binding Machine , 2001, Neuron.

[28]  T. Südhof,et al.  SNARE Function Analyzed in Synaptobrevin/VAMP Knockout Mice , 2001, Science.

[29]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[30]  R. Scheller,et al.  Three SNARE complexes cooperate to mediate membrane fusion , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[32]  Thomas C. Südhof,et al.  Complexins Regulate a Late Step in Ca2+-Dependent Neurotransmitter Release , 2001, Cell.

[33]  J. Rothman,et al.  Compartmental specificity of cellular membrane fusion encoded in SNARE proteins , 2000, Nature.

[34]  J. Rothman,et al.  Topological restriction of SNARE-dependent membrane fusion , 2000, Nature.

[35]  J. Rothman,et al.  Functional architecture of an intracellular membrane t-SNARE , 2000, Nature.

[36]  J. Rothman,et al.  Close Is Not Enough , 2000, The Journal of cell biology.

[37]  Richard H. Scheller,et al.  Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex , 2000, Nature.

[38]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[39]  J. Rothman,et al.  The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. , 1999, Molecular cell.

[40]  T. Südhof,et al.  A conformational switch in syntaxin during exocytosis: role of munc18 , 1999, The EMBO journal.

[41]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[42]  Josep Ubach,et al.  Three-Dimensional Structure of an Evolutionarily Conserved N-Terminal Domain of Syntaxin 1A , 1998, Cell.

[43]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[44]  Reinhard Jahn,et al.  Structure and Conformational Changes in NSF and Its Membrane Receptor Complexes Visualized by Quick-Freeze/Deep-Etch Electron Microscopy , 1997, Cell.

[45]  W. Regehr,et al.  Timing of neurotransmission at fast synapses in the mammalian brain , 1996, Nature.

[46]  A. Mayer,et al.  Sec18p (NSF)-Driven Release of Sec17p (α-SNAP) Can Precede Docking and Fusion of Yeast Vacuoles , 1996, Cell.

[47]  P. Hanson,et al.  Ca2+ Regulates the Interaction between Synaptotagmin and Syntaxin 1 (*) , 1995, The Journal of Biological Chemistry.

[48]  Thomas C. Südhof,et al.  Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins , 1995, Nature.

[49]  S. Sprang,et al.  Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold , 1995, Cell.

[50]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[51]  T. Südhof,et al.  Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. , 1994, The EMBO journal.

[52]  T. Südhof,et al.  A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. , 1993, The Journal of biological chemistry.

[53]  R. Jahn,et al.  Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC‐1/syntaxin. , 1993, The EMBO journal.

[54]  T. Südhof,et al.  Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin , 1993, Nature.

[55]  F. Benfenati,et al.  Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. , 1993, The Journal of biological chemistry.

[56]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[57]  Thomas C. Südhof,et al.  Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25 , 1993, Nature.

[58]  AC Tose Cell , 1993, Cell.

[59]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[60]  J. H. Chou,et al.  Tetanus toxin action: inhibition of neurotransmitter release linked to synaptobrevin proteolysis. , 1992, Biochemical and biophysical research communications.

[61]  H. Pelham,et al.  SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex , 1992, The Journal of cell biology.

[62]  F. Benfenati,et al.  Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin , 1992, Nature.

[63]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[64]  K. Akagawa,et al.  Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. , 1992, The Journal of biological chemistry.

[65]  T. Südhof,et al.  Synaptotagmin: a calcium sensor on the synaptic vesicle surface. , 1992, Science.

[66]  S. Ferro-Novick,et al.  The BOS1 gene encodes an essential 27-kD putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast , 1991, The Journal of cell biology.

[67]  D. Gallwitz,et al.  Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily , 1991, Molecular and cellular biology.

[68]  J. Rothman,et al.  SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast , 1990, Cell.

[69]  T. Südhof,et al.  Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C , 1990, Nature.

[70]  F E Bloom,et al.  The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations , 1989, The Journal of cell biology.

[71]  E. Chen,et al.  A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast , 1989, Nature.

[72]  T. Südhof,et al.  A synaptic vesicle membrane protein is conserved from mammals to Drosophila , 1989, Neuron.

[73]  Benjamin S. Glick,et al.  Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack , 1988, Cell.

[74]  R. Scheller,et al.  VAMP-1: a synaptic vesicle-associated integral membrane protein. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[75]  R. Schekman,et al.  Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway , 1980, Cell.

[76]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[77]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.