The circular law

The circular law theorem states that the empirical spectral distribution of a n×n random matrix with i.i.d. entries of variance 1/n tends to the uniform law on the unit disc of the complex plane as the dimension n tends to infinity. This phenomenon is the non-Hermitian counterpart of the semi circular limit for Wigner random Hermitian matrices, and the quarter circular limit for Marchenko-Pastur random covariance matrices. In these expository notes, we present a proof in a Gaussian case, due to Silverstein, based on a formula by Ginibre, and a proof of the universal case by revisiting the approach of Tao and Vu, based on the Hermitization of Girko, the logarithmic potential, and the control of the small singular values. We also discuss some related models. These notes constitute an abridged and updated version of the probability survey [BC12], prepared at the occasion of the American Mathematical Society short course on Random Matrices, organized by Van H. Vu for the 2013 AMSMAA Joint Mathematics Meeting held in January 9–13 in San Diego, USA. Section 1 introduces the notion of eigenvalues and singular values and discusses their relationships. Section 2 states the circular law theorem. Section 3 is devoted to the Gaussian model known as the Complex Ginibre Ensemble, for which the law of the spectrum is known and leads to the circular law. Section 4 provides the proof of the circular law theorem in the universal case, using the approach of Tao and Vu based on the Hermitization of Girko and the logarithmic potential. Section 5 gathers finally some few comments on related problems and models. All random variables are defined on a unique common probability space (Ω,A,P). A typical element of Ω is denoted ω. We write a.s., a.a., and a.e. for almost surely, Lebesgue almost all, and Lebesgue almost everywhere respectively. 1. Two kinds of spectra The eigenvalues of A ∈ Mn(C) are the roots in C of its characteristic polynomial PA(z) := det(A − zI). We label them λ1(A), . . . , λn(A) so that |λ1(A)| ≥ · · · ≥ |λn(A)| with growing phases. The spectral radius is |λ1(A)|. The eigenvalues form the algebraic spectrum of A. The singular values of A are defined by

[1]  Bent Fuglede,et al.  DETERMINANT THEORY IN FINITE FACTORS , 1952 .

[2]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[3]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[4]  B. McKay The expected eigenvalue distribution of a large regular graph , 1981 .

[5]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[6]  A. Andrews Eigenvalues and singular values of certain random matrices , 1990 .

[7]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[8]  Eric Kostlan,et al.  On the spectra of Gaussian matrices , 1992 .

[9]  Alexandru Nica,et al.  Free random variables : a noncommutative probability approach to free products with applications to random matrices, operator algebras, and harmonic analysis on free groups , 1992 .

[10]  D. Voiculescu The analogues of entropy and of Fisher's information measure in free probability theory, I , 1993 .

[11]  Harold Widom Eigenvalue Distribution for Nonselfadjoint Toeplitz Matrices , 1994 .

[12]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[13]  J. W. Silverstein THE SPECTRAL RADII AND NORMS OF LARGE DIMENSIONAL NON-CENTRAL RANDOM MATRICES , 1994 .

[14]  A. Edelman The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .

[15]  A. Zee,et al.  Non-gaussian non-hermitian random matrix theory: Phase transition and addition formalism , 1997 .

[16]  A. Zee,et al.  Non-hermitian random matrix theory: Method of hermitian reduction , 1997 .

[17]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[18]  G. B. Arous,et al.  Large deviations from the circular law , 1998 .

[19]  P. Biane,et al.  Computation of some examples of Brown's spectral measure in free probability , 1999, math/9912242.

[20]  U. Haagerup,et al.  Brown's Spectral Distribution Measure for R-Diagonal Elements in Finite von Neumann Algebras☆ , 2000 .

[21]  Random Regularization of Brown Spectral Measure , 2001, math/0105109.

[22]  On the remarkable spectrum of a non-Hermitian random matrix model , 2002, math-ph/0204015.

[23]  B. Rider A limit theorem at the edge of a non-Hermitian random matrix ensemble , 2003 .

[24]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[25]  Advances in statistics , 2005 .

[26]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[27]  K. Johansson From Gumbel to Tracy-Widom , 2005, math/0510181.

[28]  Uffe Haagerup,et al.  Brown measures of unbounded operators affiliated with a finite von Neumann algebra , 2006 .

[29]  B. Rider,et al.  The Noise in the Circular Law and the Gaussian Free Field , 2006, math/0606663.

[30]  J. W. Silverstein,et al.  Gaussian fluctuations for non-Hermitian random matrix ensembles , 2005, math/0502400.

[31]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[32]  General tridiagonal random matrix models, limiting distributions and fluctuations , 2006, math/0610827.

[33]  T. Tao,et al.  RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.

[34]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[35]  G. B. Arous,et al.  The Spectrum of Heavy Tailed Random Matrices , 2007, 0707.2159.

[36]  F. Gotze,et al.  On the Circular Law , 2007, math/0702386.

[37]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .

[38]  H. Yau,et al.  Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.

[39]  T. Tao,et al.  From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices , 2008, 0810.2994.

[40]  Terence Tao,et al.  Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.

[41]  COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW , 2008 .

[42]  Peter J. Forrester,et al.  Derivation of an eigenvalue probability density function relating to the Poincaré disk , 2009, 0906.5223.

[43]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[44]  Amir Dembo,et al.  Spectral Measure of Heavy Tailed Band and Covariance Random Matrices , 2008, 0811.1587.

[45]  T. Rogers,et al.  Cavity approach to the spectral density of non-Hermitian sparse matrices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Tiefeng Jiang,et al.  Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles , 2009 .

[47]  Mark W. Meckes,et al.  Some results on random circulant matrices , 2009, 0902.2472.

[48]  Ofer Zeitouni,et al.  The single ring theorem , 2009, 0909.2214.

[49]  Russell Lyons,et al.  Identities and Inequalities for Tree Entropy , 2007, Combinatorics, Probability and Computing.

[50]  Tim Rogers,et al.  Universal sum and product rules for random matrices , 2009, 0912.2499.

[51]  Martin Bender,et al.  Edge scaling limits for a family of non-Hermitian random matrix ensembles , 2008, 0808.2608.

[52]  Ofer Zeitouni,et al.  Support convergence in the single ring theorem , 2010, 1012.2624.

[53]  A. Soshnikov,et al.  Products of Independent non-Hermitian Random Matrices , 2010, 1012.4497.

[54]  Djalil CHAFAÏ,et al.  Circular Law for Noncentral Random Matrices , 2007, 0709.0036.

[55]  P. Forrester Log-Gases and Random Matrices , 2010 .

[56]  Terence Tao,et al.  Smooth analysis of the condition number and the least singular value , 2008, Math. Comput..

[57]  T. Tao Outliers in the spectrum of iid matrices with bounded rank perturbations , 2010 .

[58]  Wang Zhou,et al.  Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..

[59]  C. Bordenave On the spectrum of sum and product of non-hermitian random matrices , 2010, 1010.3087.

[60]  C. Bordenave,et al.  Spectrum of Non-Hermitian Heavy Tailed Random Matrices , 2010, 1006.1713.

[61]  Philip Matchett Wood,et al.  Convergence of the spectral measure of non normal matrices , 2011, 1110.2471.

[62]  R. Adamczak On the Marchenko-Pastur and Circular Laws for some Classes of Random Matrices with Dependent Entries , 2011 .

[63]  Djalil Chafaï,et al.  Interactions between compressed sensing, random matrices, and high dimensional geometry , 2012 .

[64]  H. Yau,et al.  The local circular law II: the edge case , 2012, 1206.3187.

[65]  H. Yau,et al.  Local circular law for random matrices , 2012, 1206.1449.

[66]  C. Bordenave,et al.  Spectrum of Markov Generators on Sparse Random Graphs , 2012, 1202.0644.

[67]  A. Hardy A note on large deviations for 2D Coulomb gas with weakly confining potential , 2012, 1202.2809.

[68]  Sean O'Rourke,et al.  The Elliptic Law , 2012, 1208.5883.

[69]  Van Vu,et al.  Circular law for random discrete matrices of given row sum , 2012, 1203.5941.

[70]  H. Nguyen Random doubly stochastic matrices: The circular law , 2012, 1205.0843.

[71]  A. Naumov Elliptic law for real random matrices , 2012, 1201.1639.

[72]  Tiefeng Jiang,et al.  Circular law and arc law for truncation of random unitary matrix , 2012 .

[73]  Philip Matchett Wood Universality and the circular law for sparse random matrices. , 2010, 1010.1726.

[74]  Charles Bordenave,et al.  Circular law theorem for random Markov matrices , 2008, Probability Theory and Related Fields.

[75]  Limiting Spectral distribution of sum of Unitary matrices , 2012 .

[76]  Mark Rudelson,et al.  Invertibility of random matrices: Unitary and orthogonal perturbations , 2012, 1206.5180.

[77]  C. Bordenave,et al.  Around the circular law , 2011, 1109.3343.

[78]  S. Serfaty,et al.  2D Coulomb Gases and the Renormalized Energy , 2012, 1201.3503.

[79]  Z. Kabluchko,et al.  Universality for zeros of random analytic functions , 2012, 1205.5355.

[80]  Madan Lal Mehta,et al.  Random Matrices and the Statistical Theory of Energy Levels , 2014 .