The circular law
暂无分享,去创建一个
[1] Bent Fuglede,et al. DETERMINANT THEORY IN FINITE FACTORS , 1952 .
[2] Harry Kesten,et al. Symmetric random walks on groups , 1959 .
[3] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[4] B. McKay. The expected eigenvalue distribution of a large regular graph , 1981 .
[5] Colin McDiarmid,et al. Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .
[6] A. Andrews. Eigenvalues and singular values of certain random matrices , 1990 .
[7] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[8] Eric Kostlan,et al. On the spectra of Gaussian matrices , 1992 .
[9] Alexandru Nica,et al. Free random variables : a noncommutative probability approach to free products with applications to random matrices, operator algebras, and harmonic analysis on free groups , 1992 .
[10] D. Voiculescu. The analogues of entropy and of Fisher's information measure in free probability theory, I , 1993 .
[11] Harold Widom. Eigenvalue Distribution for Nonselfadjoint Toeplitz Matrices , 1994 .
[12] M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.
[13] J. W. Silverstein. THE SPECTRAL RADII AND NORMS OF LARGE DIMENSIONAL NON-CENTRAL RANDOM MATRICES , 1994 .
[14] A. Edelman. The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .
[15] A. Zee,et al. Non-gaussian non-hermitian random matrix theory: Phase transition and addition formalism , 1997 .
[16] A. Zee,et al. Non-hermitian random matrix theory: Method of hermitian reduction , 1997 .
[17] E. Saff,et al. Logarithmic Potentials with External Fields , 1997 .
[18] G. B. Arous,et al. Large deviations from the circular law , 1998 .
[19] P. Biane,et al. Computation of some examples of Brown's spectral measure in free probability , 1999, math/9912242.
[20] U. Haagerup,et al. Brown's Spectral Distribution Measure for R-Diagonal Elements in Finite von Neumann Algebras☆ , 2000 .
[21] Random Regularization of Brown Spectral Measure , 2001, math/0105109.
[22] On the remarkable spectrum of a non-Hermitian random matrix model , 2002, math-ph/0204015.
[23] B. Rider. A limit theorem at the edge of a non-Hermitian random matrix ensemble , 2003 .
[24] J. Michael Steele,et al. The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .
[25] Advances in statistics , 2005 .
[26] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[27] K. Johansson. From Gumbel to Tracy-Widom , 2005, math/0510181.
[28] Uffe Haagerup,et al. Brown measures of unbounded operators affiliated with a finite von Neumann algebra , 2006 .
[29] B. Rider,et al. The Noise in the Circular Law and the Gaussian Free Field , 2006, math/0606663.
[30] J. W. Silverstein,et al. Gaussian fluctuations for non-Hermitian random matrix ensembles , 2005, math/0502400.
[31] D. Aldous,et al. Processes on Unimodular Random Networks , 2006, math/0603062.
[32] General tridiagonal random matrix models, limiting distributions and fluctuations , 2006, math/0610827.
[33] T. Tao,et al. RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.
[34] M. Rudelson,et al. The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.
[35] G. B. Arous,et al. The Spectrum of Heavy Tailed Random Matrices , 2007, 0707.2159.
[36] F. Gotze,et al. On the Circular Law , 2007, math/0702386.
[37] J. W. Silverstein,et al. On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .
[38] H. Yau,et al. Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.
[39] T. Tao,et al. From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices , 2008, 0810.2994.
[40] Terence Tao,et al. Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.
[41] COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW , 2008 .
[42] Peter J. Forrester,et al. Derivation of an eigenvalue probability density function relating to the Poincaré disk , 2009, 0906.5223.
[43] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[44] Amir Dembo,et al. Spectral Measure of Heavy Tailed Band and Covariance Random Matrices , 2008, 0811.1587.
[45] T. Rogers,et al. Cavity approach to the spectral density of non-Hermitian sparse matrices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[46] Tiefeng Jiang,et al. Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles , 2009 .
[47] Mark W. Meckes,et al. Some results on random circulant matrices , 2009, 0902.2472.
[48] Ofer Zeitouni,et al. The single ring theorem , 2009, 0909.2214.
[49] Russell Lyons,et al. Identities and Inequalities for Tree Entropy , 2007, Combinatorics, Probability and Computing.
[50] Tim Rogers,et al. Universal sum and product rules for random matrices , 2009, 0912.2499.
[51] Martin Bender,et al. Edge scaling limits for a family of non-Hermitian random matrix ensembles , 2008, 0808.2608.
[52] Ofer Zeitouni,et al. Support convergence in the single ring theorem , 2010, 1012.2624.
[53] A. Soshnikov,et al. Products of Independent non-Hermitian Random Matrices , 2010, 1012.4497.
[54] Djalil CHAFAÏ,et al. Circular Law for Noncentral Random Matrices , 2007, 0709.0036.
[55] P. Forrester. Log-Gases and Random Matrices , 2010 .
[56] Terence Tao,et al. Smooth analysis of the condition number and the least singular value , 2008, Math. Comput..
[57] T. Tao. Outliers in the spectrum of iid matrices with bounded rank perturbations , 2010 .
[58] Wang Zhou,et al. Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..
[59] C. Bordenave. On the spectrum of sum and product of non-hermitian random matrices , 2010, 1010.3087.
[60] C. Bordenave,et al. Spectrum of Non-Hermitian Heavy Tailed Random Matrices , 2010, 1006.1713.
[61] Philip Matchett Wood,et al. Convergence of the spectral measure of non normal matrices , 2011, 1110.2471.
[62] R. Adamczak. On the Marchenko-Pastur and Circular Laws for some Classes of Random Matrices with Dependent Entries , 2011 .
[63] Djalil Chafaï,et al. Interactions between compressed sensing, random matrices, and high dimensional geometry , 2012 .
[64] H. Yau,et al. The local circular law II: the edge case , 2012, 1206.3187.
[65] H. Yau,et al. Local circular law for random matrices , 2012, 1206.1449.
[66] C. Bordenave,et al. Spectrum of Markov Generators on Sparse Random Graphs , 2012, 1202.0644.
[67] A. Hardy. A note on large deviations for 2D Coulomb gas with weakly confining potential , 2012, 1202.2809.
[68] Sean O'Rourke,et al. The Elliptic Law , 2012, 1208.5883.
[69] Van Vu,et al. Circular law for random discrete matrices of given row sum , 2012, 1203.5941.
[70] H. Nguyen. Random doubly stochastic matrices: The circular law , 2012, 1205.0843.
[71] A. Naumov. Elliptic law for real random matrices , 2012, 1201.1639.
[72] Tiefeng Jiang,et al. Circular law and arc law for truncation of random unitary matrix , 2012 .
[73] Philip Matchett Wood. Universality and the circular law for sparse random matrices. , 2010, 1010.1726.
[74] Charles Bordenave,et al. Circular law theorem for random Markov matrices , 2008, Probability Theory and Related Fields.
[75] Limiting Spectral distribution of sum of Unitary matrices , 2012 .
[76] Mark Rudelson,et al. Invertibility of random matrices: Unitary and orthogonal perturbations , 2012, 1206.5180.
[77] C. Bordenave,et al. Around the circular law , 2011, 1109.3343.
[78] S. Serfaty,et al. 2D Coulomb Gases and the Renormalized Energy , 2012, 1201.3503.
[79] Z. Kabluchko,et al. Universality for zeros of random analytic functions , 2012, 1205.5355.
[80] Madan Lal Mehta,et al. Random Matrices and the Statistical Theory of Energy Levels , 2014 .