Maximising the number of cycles in graphs with forbidden subgraphs

Fix $k \ge 2$ and let $H$ be a graph with $\chi(H) = k+1$ containing a critical edge. We show that for sufficiently large $n$, the unique $n$-vertex $H$-free graph containing the maximum number of cycles is $T_k(n)$. This resolves both a question and a conjecture of Arman, Gunderson and Tsaturian.

[1]  Andrii Arman,et al.  The Maximum Number of Cycles in a Graph with Fixed Number of Edges , 2017, Electron. J. Comb..

[2]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[3]  Andrii Arman Maximum number of cycles in graphs and multigraphs , 2016 .

[4]  L. Moser,et al.  AN EXTREMAL PROBLEM IN GRAPH THEORY , 2001 .

[5]  Miklós Simonovits,et al.  Extremal graph problems with symmetrical extremal graphs. Additional chromatic conditions , 1974, Discret. Math..

[6]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[7]  Pak Ching Li,et al.  Cycle-maximal triangle-free graphs , 2013, Discret. Math..

[8]  Béla Bollobás,et al.  Pentagons vs. triangles , 2008, Discret. Math..

[9]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[10]  P. Erdös On an extremal problem in graph theory , 1970 .

[11]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[12]  B. Bollobás On complete subgraphs of different orders , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[14]  W. Ahrens Ueber das Gleichungssystem einer Kirchhoff'schen galvanischen Stromverzweigung , 1897 .

[15]  Noga Alon,et al.  Many T copies in H-free graphs , 2014, Electron. Notes Discret. Math..

[16]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[17]  Jan Hladký,et al.  On the number of pentagons in triangle-free graphs , 2013, J. Comb. Theory, Ser. A.

[18]  Z. Király Maximum Number of Cycles and Hamiltonian Cycles in Sparse Graphs , 2009 .

[19]  Hao Li,et al.  The Maximum Number of Triangles in C2k+1-Free Graphs , 2012, Combinatorics, Probability and Computing.

[20]  Alexander Roberts,et al.  Stability results for graphs with a critical edge , 2016, Eur. J. Comb..

[21]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[22]  Andrzej Grzesik On the maximum number of five-cycles in a triangle-free graph , 2012, J. Comb. Theory, Ser. B.

[23]  J. Sheehan,et al.  On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.

[24]  Alex D. Scott,et al.  Maximising the number of induced cycles in a graph , 2016, J. Comb. Theory, Ser. B.

[25]  Andrzej Grzesik,et al.  On the maximum number of odd cycles in graphs without smaller odd cycles , 2022, J. Graph Theory.

[26]  David S. Gunderson,et al.  Triangle-free graphs with the maximum number of cycles , 2015, Discret. Math..