Maximising the number of cycles in graphs with forbidden subgraphs
暂无分享,去创建一个
[1] Andrii Arman,et al. The Maximum Number of Cycles in a Graph with Fixed Number of Edges , 2017, Electron. J. Comb..
[2] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .
[3] Andrii Arman. Maximum number of cycles in graphs and multigraphs , 2016 .
[4] L. Moser,et al. AN EXTREMAL PROBLEM IN GRAPH THEORY , 2001 .
[5] Miklós Simonovits,et al. Extremal graph problems with symmetrical extremal graphs. Additional chromatic conditions , 1974, Discret. Math..
[6] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[7] Pak Ching Li,et al. Cycle-maximal triangle-free graphs , 2013, Discret. Math..
[8] Béla Bollobás,et al. Pentagons vs. triangles , 2008, Discret. Math..
[9] P. Erdos,et al. A LIMIT THEOREM IN GRAPH THEORY , 1966 .
[10] P. Erdös. On an extremal problem in graph theory , 1970 .
[11] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[12] B. Bollobás. On complete subgraphs of different orders , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] B. Bollobás,et al. Extremal Graph Theory , 2013 .
[14] W. Ahrens. Ueber das Gleichungssystem einer Kirchhoff'schen galvanischen Stromverzweigung , 1897 .
[15] Noga Alon,et al. Many T copies in H-free graphs , 2014, Electron. Notes Discret. Math..
[16] Danna Zhou,et al. d. , 1840, Microbial pathogenesis.
[17] Jan Hladký,et al. On the number of pentagons in triangle-free graphs , 2013, J. Comb. Theory, Ser. A.
[18] Z. Király. Maximum Number of Cycles and Hamiltonian Cycles in Sparse Graphs , 2009 .
[19] Hao Li,et al. The Maximum Number of Triangles in C2k+1-Free Graphs , 2012, Combinatorics, Probability and Computing.
[20] Alexander Roberts,et al. Stability results for graphs with a critical edge , 2016, Eur. J. Comb..
[21] P. Erdös,et al. On the structure of linear graphs , 1946 .
[22] Andrzej Grzesik. On the maximum number of five-cycles in a triangle-free graph , 2012, J. Comb. Theory, Ser. B.
[23] J. Sheehan,et al. On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.
[24] Alex D. Scott,et al. Maximising the number of induced cycles in a graph , 2016, J. Comb. Theory, Ser. B.
[25] Andrzej Grzesik,et al. On the maximum number of odd cycles in graphs without smaller odd cycles , 2022, J. Graph Theory.
[26] David S. Gunderson,et al. Triangle-free graphs with the maximum number of cycles , 2015, Discret. Math..