New materials for 157-nm photoresists: characterization and properties

The design of an organic material satisfying all of the requirements for a single layer photolithography resist at 157 nm is a formidable challenge. All known resists used for optical lithography at 193 nm or longer wavelengths are too highly absorbing at 157 nm to be used at film thicknesses greater than approximately 90 nm. Our goal has been to identify potential, new photoresist platforms that have good transparency at 157 nm (thickness normalized absorbance of 2.5 micrometer-1 or less), acceptable plasma etch resistance, high Tg and compatibility with conventional 0.26 N tetramethylammonium hydroxide developers. We have been investigating partially fluorinated resins and copolymers containing transparent acidic groups as potential 157 nm photoresist binders; a variety of material with promising initial sets of properties (transparency, etch resistance, solubility in aqueous TMAH) have been identified. Balancing these properties with imaging performance, however, remains a significant challenge.