Tight bounding volumes for subdivision surfaces

We first demonstrate how to compute exact limit points and tangents for surfaces generated by an arbitrary, stationary subdivision scheme. We then describe how to construct simple bounding volumes for the patches of a subdivision surface and present a simple numerical technique to compute guaranteed bounds for the ranges of the basis functions being associated with the subdivision scheme. Merging the local bounding volumes allows us to generate envelope meshes which tightly enclose the limit surface and which have the same structure as the initial control mesh. The prominent applications for these envelope meshes are the efficient ray tracing of subdivision surfaces as well as efficient collision detection.

[1]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[2]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[3]  Wilhelm Barth,et al.  Efficient ray tracing for Bezier and B-spline surfaces , 1993, Comput. Graph..

[4]  Andrew S. Glassner,et al.  An introduction to ray tracing , 1989 .

[5]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[6]  Richard H. Bartels,et al.  Ray Tracing Free-Form B-Spline Surfaces , 1986, IEEE Computer Graphics and Applications.

[7]  C. Yang On speeding up ray tracing of B-spline surfaces , 1987 .

[8]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[9]  David Salesin,et al.  Wavelets for computer graphics: theory and applications , 1996 .

[10]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[11]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Hans-Peter Seidel,et al.  Bounded Radiosity – Illumination on General Surfaces and Clusters , 1997, Comput. Graph. Forum.

[13]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[14]  Alain Fournier,et al.  Chebyshev Polynomials for Boxing and Intersections of Parametric Curves and Surfaces , 1994, Comput. Graph. Forum.

[15]  Ulrich Reif,et al.  Neue Aspekte in der Theorie der Freiformflächen beliebiger Topologie , 1993 .

[16]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[17]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[18]  Tomoyuki Nishita,et al.  Ray tracing trimmed rational surface patches , 1990, SIGGRAPH.

[19]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[20]  Michael F. Cohen,et al.  Radiosity and realistic image synthesis , 1993 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[23]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[24]  James T. Kajiya,et al.  Ray tracing parametric patches , 1982, SIGGRAPH.

[25]  Daniel L. Toth,et al.  On ray tracing parametric surfaces , 1985, SIGGRAPH.