Parametric sensitivity reduction of PI-based control systems by means of evolutionary optimization algorithms

This paper proposes new optimization algorithms for the optimal tuning of PI controllers dedicated to a class of second-order processes with integral component and variable parameters. The sensitivity analysis with respect to the parametric variations of the controlled process leads to the sensitivity models. The augmentation of the output sensitivity functions over the integral of absolute error criterion results in the definition of objective functions, and the corresponding optimization problems are solved by Particle Swarm Optimization (PSO) and Gravitational Search Algorithms (GSA). The algorithms are tested in a case study associated with several analyses.

[1]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[2]  Wolfgang Marquardt,et al.  Neighboring-extremal updates for nonlinear model-predictive control and dynamic real-time optimization , 2009 .

[3]  Leandro dos Santos Coelho,et al.  Computational intelligence approach to PID controller design using the universal model , 2010, Inf. Sci..

[4]  M. Manic,et al.  Comparative analysis of Type-1 and Type-2 fuzzy control in context of learning behaviors for mobile robotics , 2010, IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society.

[6]  Dominique Bonvin,et al.  Optimizing control based on output feedback , 2009, Comput. Chem. Eng..

[7]  F.W. Fuchs,et al.  Speed control of torsional drive systems with backlash , 2009, 2009 13th European Conference on Power Electronics and Applications.

[8]  Igor Škrjanc,et al.  Adaptive law with a new leakage term , 2010 .

[9]  Hideki Hashimoto,et al.  Trajectory Tracking by TP Model Transformation: Case Study of a Benchmark Problem , 2007, IEEE Transactions on Industrial Electronics.

[10]  Stefan Preitl,et al.  An extension of tuning relations after symmetrical optimum method for PI and PID controllers , 1999, Autom..

[11]  Stefan Preitl,et al.  Fuzzy Controllers With Maximum Sensitivity for Servosystems , 2007, IEEE Transactions on Industrial Electronics.

[12]  Pei-Hsi Lee,et al.  An economic-statistical design of double sampling control chart , 2009 .

[13]  Stefan Preitl,et al.  Optimisation criteria in development of fuzzy controllers with dynamics , 2004, Eng. Appl. Artif. Intell..

[14]  Levente Kovács,et al.  Type 1 Diabetes Regulated by ANFIS at Molecular Levels , 2009 .

[15]  Salman Mohagheghi,et al.  Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems , 2008, IEEE Transactions on Evolutionary Computation.

[16]  E. Rosenwasser,et al.  Sensitivity of Automatic Control Systems , 1999 .

[17]  Yuanwei Jing,et al.  A Q-learning model-independent flow controller for high-speed networks , 2009, 2009 American Control Conference.

[18]  Kok Kiong Tan,et al.  Self-Sensing Actuation With Adaptive Control in Applications With Switching Trajectory , 2008, IEEE/ASME Transactions on Mechatronics.

[19]  M. Konishi,et al.  Structure design with sensitivity control performance limitation for electromechanical systems , 2006, 2006 SICE-ICASE International Joint Conference.

[20]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[21]  Motohiro Kawafuku,et al.  Practical Controller Design of Hybrid Experimental System for Seismic Tests , 2009, IEEE Transactions on Industrial Electronics.

[22]  István Á. Harmati,et al.  Robot team coordination for target tracking using fuzzy logic controller in game theoretic framework , 2009, Robotics Auton. Syst..

[23]  Imre J. Rudas,et al.  Modeling and Problem Solving Techniques for Engineers , 2004 .

[24]  Z. Johanyák Student Evaluation Based On Fuzzy Rule Interpolation , 2010 .

[25]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[27]  Hossein Nezamabadi-pour,et al.  BGSA: binary gravitational search algorithm , 2010, Natural Computing.

[28]  Daniel Hladek,et al.  MULTI-ROBOT CONTROL SYSTEM FOR PURSUIT-EVASION PROBLEM , 2009 .