A statistical approach for transferring fracture events across different sample shapes

Abstract The paper investigates the capability of a novel calibration method to predict accurately fracture events across different sample shapes at low temperatures. It is shown that the emergence of a threshold Weibull stress in the Weibull stress distribution is inherent in the fundamental assumptions of the Beremin model. The mathematical concept underlying the suggested calibration method is the correlation between the probability distributions of the fracture loads and the associated Weibull stresses. The calibration procedure is demonstrated using fracture data obtained in tests conducted at a test temperature of −150 °C on specimens fabricated of A533B ferritic steel. In contrast to the values found in the literature, the calibrated Weibull modulus is small and ranges from 2 to 4. The proposed methodology is straightforward to apply and yields reliable predictions of the failure probabilities of samples of different shapes.

[1]  A. Pineau,et al.  A local criterion for cleavage fracture of a nuclear pressure vessel steel , 1983 .

[2]  T. Anderson Application of fractal geometry to damage development and brittle fracture in materials , 1989 .

[3]  D. Munz,et al.  Estimation procedure for the Weibull parameters used in the local approach , 1992, International Journal of Fracture.

[4]  H. Kushwaha,et al.  Finite element formulation of a new nonlocal damage model , 2008 .

[5]  Martin Kroon,et al.  A probabilistic model for cleavage fracture with a length scale - parameter estimation and predictions of stationary crack experiments , 2004 .

[6]  D. M. Knowles,et al.  A new statistical local criterion for cleavage fracture in steel. Part I: model presentation , 2004 .

[7]  D. Cousineau,et al.  Fitting the three-parameter weibull distribution: review and evaluation of existing and new methods , 2009, IEEE Transactions on Dielectrics and Electrical Insulation.

[8]  Claudio Ruggieri,et al.  Calibration of Weibull stress parameters using fracture toughness data , 1998 .

[9]  Russell C. H. Cheng,et al.  Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin , 1983 .

[10]  M. Kendall Elementary Statistics , 1945, Nature.

[11]  Noel P. O’Dowd,et al.  Prediction of cleavage failure probabilities using the Weibull stress , 2000 .

[12]  Claudio Ruggieri,et al.  Transferability of elastic–plastic fracture toughness using the Weibull stress approach: significance of parameter calibration , 2000 .

[13]  Simon John Lewis Influences of load history on the cleavage fracture of steels , 2009 .

[14]  M. Huh,et al.  Application of the local fracture stress model on the cleavage fracture of the reactor pressure vessel steels in the transition temperature region , 2003 .

[15]  Claudio Ruggieri,et al.  Influence of threshold parameters on cleavage fracture predictions using the Weibull stress model , 2001 .

[16]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[17]  T. Srivatsan,et al.  A Probabilistic Model for Prediction of Cleavage Fracture in the Ductile-To-Brittle Transition Region and the Effect of Temperature on Model Parameters , 2006 .

[18]  Tirumalai S. Srivatsan,et al.  Prediction of Cleavage Fracture in Ferritic Steels: A Modified Weibull Stress Model , 2005 .

[19]  Howard E. Rockette,et al.  Maximum Likelihood Estimation with the Weibull Model , 1974 .

[20]  Robert H. Dodds,et al.  Coupling of the Weibull stress model and macroscale models to predict cleavage fracture , 2004 .

[21]  Kim Wallin,et al.  The scatter in KIC-results , 1984 .

[22]  A. Pineau Modeling ductile to brittle fracture transition in steels—micromechanical and physical challenges , 2008 .

[23]  A. Pineau,et al.  Development of the Local Approach to Fracture over the Past 25 years: Theory and Applications , 2006 .

[24]  R. Mosković Analysis of fracture toughness data in the brittle to ductile transition region for creusot-loire A508 class 3 forging used in the construction of PWR reactors , 1995 .

[25]  G. P. Karzov,et al.  Analysis of structure integrity of RPV on the basis of brittle fracture criterion: new approaches , 2004 .

[26]  M. Burstow A re-assessment of parameter tuning for the Beremin model using the toughness scaling technique , 2003 .

[27]  Bryan Dodson,et al.  The Weibull Analysis Handbook , 1994 .

[28]  M. Stephens,et al.  K-Sample Anderson–Darling Tests , 1987 .

[29]  M. E. J. Newman,et al.  Power laws, Pareto distributions and Zipf's law , 2005 .

[30]  Martin Kroon,et al.  A probabilistic model for cleavage fracture with a length scale-influence of material parameters and constraint , 2002 .

[31]  D. M. Knowles,et al.  A new statistical local criterion for cleavage fracture in steel. Part II: application to an offshore structural steel , 2004 .

[32]  G Bernauer,et al.  Modifications of the Beremin model for cleavage fracture in the transition region of a ferritic steel , 1999 .