A statistical approach for transferring fracture events across different sample shapes
暂无分享,去创建一个
David J. Smith | Sj Lewis | Julian D Booker | K Rosahl | J. Booker | D. Smith | S. Lewis | K. Rosahl
[1] A. Pineau,et al. A local criterion for cleavage fracture of a nuclear pressure vessel steel , 1983 .
[2] T. Anderson. Application of fractal geometry to damage development and brittle fracture in materials , 1989 .
[3] D. Munz,et al. Estimation procedure for the Weibull parameters used in the local approach , 1992, International Journal of Fracture.
[4] H. Kushwaha,et al. Finite element formulation of a new nonlocal damage model , 2008 .
[5] Martin Kroon,et al. A probabilistic model for cleavage fracture with a length scale - parameter estimation and predictions of stationary crack experiments , 2004 .
[6] D. M. Knowles,et al. A new statistical local criterion for cleavage fracture in steel. Part I: model presentation , 2004 .
[7] D. Cousineau,et al. Fitting the three-parameter weibull distribution: review and evaluation of existing and new methods , 2009, IEEE Transactions on Dielectrics and Electrical Insulation.
[8] Claudio Ruggieri,et al. Calibration of Weibull stress parameters using fracture toughness data , 1998 .
[9] Russell C. H. Cheng,et al. Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin , 1983 .
[10] M. Kendall. Elementary Statistics , 1945, Nature.
[11] Noel P. O’Dowd,et al. Prediction of cleavage failure probabilities using the Weibull stress , 2000 .
[12] Claudio Ruggieri,et al. Transferability of elastic–plastic fracture toughness using the Weibull stress approach: significance of parameter calibration , 2000 .
[13] Simon John Lewis. Influences of load history on the cleavage fracture of steels , 2009 .
[14] M. Huh,et al. Application of the local fracture stress model on the cleavage fracture of the reactor pressure vessel steels in the transition temperature region , 2003 .
[15] Claudio Ruggieri,et al. Influence of threshold parameters on cleavage fracture predictions using the Weibull stress model , 2001 .
[16] T. W. Anderson,et al. Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .
[17] T. Srivatsan,et al. A Probabilistic Model for Prediction of Cleavage Fracture in the Ductile-To-Brittle Transition Region and the Effect of Temperature on Model Parameters , 2006 .
[18] Tirumalai S. Srivatsan,et al. Prediction of Cleavage Fracture in Ferritic Steels: A Modified Weibull Stress Model , 2005 .
[19] Howard E. Rockette,et al. Maximum Likelihood Estimation with the Weibull Model , 1974 .
[20] Robert H. Dodds,et al. Coupling of the Weibull stress model and macroscale models to predict cleavage fracture , 2004 .
[21] Kim Wallin,et al. The scatter in KIC-results , 1984 .
[22] A. Pineau. Modeling ductile to brittle fracture transition in steels—micromechanical and physical challenges , 2008 .
[23] A. Pineau,et al. Development of the Local Approach to Fracture over the Past 25 years: Theory and Applications , 2006 .
[24] R. Mosković. Analysis of fracture toughness data in the brittle to ductile transition region for creusot-loire A508 class 3 forging used in the construction of PWR reactors , 1995 .
[25] G. P. Karzov,et al. Analysis of structure integrity of RPV on the basis of brittle fracture criterion: new approaches , 2004 .
[26] M. Burstow. A re-assessment of parameter tuning for the Beremin model using the toughness scaling technique , 2003 .
[27] Bryan Dodson,et al. The Weibull Analysis Handbook , 1994 .
[28] M. Stephens,et al. K-Sample Anderson–Darling Tests , 1987 .
[29] M. E. J. Newman,et al. Power laws, Pareto distributions and Zipf's law , 2005 .
[30] Martin Kroon,et al. A probabilistic model for cleavage fracture with a length scale-influence of material parameters and constraint , 2002 .
[31] D. M. Knowles,et al. A new statistical local criterion for cleavage fracture in steel. Part II: application to an offshore structural steel , 2004 .
[32] G Bernauer,et al. Modifications of the Beremin model for cleavage fracture in the transition region of a ferritic steel , 1999 .