A unified local convergence analysis of inexact constrained Levenberg–Marquardt methods

The Levenberg–Marquardt method is a regularized Gauss–Newton method for solving systems of nonlinear equations. If an error bound condition holds it is known that local quadratic convergence to a non-isolated solution can be achieved. This result was extended to constrained Levenberg–Marquardt methods for solving systems of equations subject to convex constraints. This paper presents a local convergence analysis for an inexact version of a constrained Levenberg–Marquardt method. It is shown that the best results known for the unconstrained case also hold for the constrained Levenberg–Marquardt method. Moreover, the influence of the regularization parameter on the level of inexactness and the convergence rate is described. The paper improves and unifies several existing results on the local convergence of Levenberg–Marquardt methods.

[1]  Ju-Liang Zhang On the convergence properties of the Levenberg–Marquardt method , 2003 .

[2]  Andreas Fischer,et al.  A Levenberg-Marquardt algorithm for unconstrained multicriteria optimization , 2008, Oper. Res. Lett..

[3]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[4]  Benedetta Morini,et al.  Trust-region quadratic methods for nonlinear systems of mixed equalities and inequalities , 2009 .

[5]  M. Fukushima,et al.  Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints , 2004 .

[6]  Francisco Facchinei,et al.  Generalized Nash equilibrium problems and Newton methods , 2008, Math. Program..

[7]  M. Fukushima,et al.  On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .

[8]  Stefania Petra,et al.  On a semismooth least squares formulation of complementarity problems with gap reduction , 2004, Optim. Methods Softw..

[9]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[10]  Stefania Bellavia,et al.  Subspace Trust-Region Methods for Large Bound-Constrained Nonlinear Equations , 2006, SIAM J. Numer. Anal..

[11]  Jinyan Fan,et al.  Inexact Levenberg-Marquardt method for nonlinear equations , 2004 .

[12]  Stefania Petra,et al.  Projected filter trust region methods for a semismooth least squares formulation of mixed complementarity problems , 2007, Optim. Methods Softw..

[13]  Francisco Facchinei,et al.  A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems , 1997, Math. Program..

[14]  Detong Zhu,et al.  Affine scaling interior Levenberg-Marquardt method for bound-constrained semismooth equations under local error bound conditions , 2008 .

[15]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[16]  A. Fischer,et al.  On the inexactness level of robust Levenberg–Marquardt methods , 2010 .

[17]  Ya-Xiang Yuan,et al.  On the Quadratic Convergence of the Levenberg-Marquardt Method without Nonsingularity Assumption , 2005, Computing.

[18]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[19]  Masao Fukushima,et al.  Convergence Properties of the Inexact Levenberg-Marquardt Method under Local Error Bound Conditions , 2002, Optim. Methods Softw..

[20]  Andreas Fischer,et al.  Local behavior of an iterative framework for generalized equations with nonisolated solutions , 2002, Math. Program..

[21]  C. Kanzow Levenberg-Marquardt methods for constrained nonlinear equations with strong local convergence properties , 2004 .