A new portrayal of electron and hole traps in amorphous silicon nitride

Trap centers in amorphous silicon nitride (a‐SiNx) have been considered to be amphoteric. We found two signals of Si3 3/4 Si0 and N3 3/4 Si0 (Si dangling bonds with an unpaired electron) by an electron‐spin‐resonance method, and estimated the hole trap density to be larger than the electron trap density by about one decade, using the nonvolatile memory devices. As a result, we propose a new portrayal in which electron/hole traps are at the interface between Si clusters and a‐SiNx bulk, and hole traps are at nitrogen vacancies in a‐SiNx bulk.

[1]  Ken Uchida,et al.  Yield and reliability of MNOS EEPROM products , 1989 .

[2]  P. Arnett,et al.  Silicon nitride trap properties as revealed by charge−centroid measurements on MNOS devices , 1975 .

[3]  Takaaki Hagiwara,et al.  Scaling Down MNOS Nonvolatile Memory Devices , 1982 .

[4]  A. Ourmazd,et al.  Bragg diffraction by amorphous silicon , 1987, Nature.

[5]  R. Haug,et al.  X‐ray photoelectron spectroscopy observations of argon‐ion bombardment effects on phase separated structures such as SiNx alloys or Si/Si3N4 interfaces , 1986 .

[6]  Akio Sasaki,et al.  Dangling Bonds in Memory‐Quality Silicon Nitride Films , 1985 .

[7]  J. Daiber,et al.  Electron-temperature and spontaneous-magnetic-field measurements in a laser-irradiated free jet , 1977 .

[8]  Kazunori Furusawa,et al.  Improvement of Written-State Retentivity by Scaling Down MNOS Memory Devices : Silicon Devices and Process Technologies( Solid State Devices and Materials 1) , 1988 .

[9]  P. Lenahan,et al.  Nature of the E’ deep hole trap in metal‐oxide‐semiconductor oxides , 1987 .

[10]  John Robertson,et al.  Gap states in silicon nitride , 1984 .

[11]  Tatsuo Shimizu,et al.  Properties of Hydrogenated Amorphous Si-N Prepared by Various Methods , 1985 .

[12]  S. Nguyen,et al.  Plasma Deposition and Characterization of Thin Silicon‐Rich Silicon Nitride Films , 1987 .

[13]  D. Griscom Characterization of three E'-center variants in X- and γ-irradiated high purity a-SiO2 , 1984 .

[14]  W. Fowler,et al.  Oxygen vacancy model for the E1′ center in SiO2 , 1974 .

[15]  W. Lanford,et al.  Variation of Hydrogen Bonding, Depth Profiles, and Spin Density in Plasma‐Deposited Silicon Nitride and Oxynitride Film with Deposition Mechanism , 1986 .

[16]  C. Kaito,et al.  High Resolution Electron Microscopic Studies of Amorphous SiO Film , 1984 .

[17]  T. P. Ma,et al.  Ionizing radiation effects in MOS devices and circuits , 1989 .

[18]  D. Frohman-Bentchkowsky,et al.  Charge Transport and Storage in Metal‐Nitride‐Oxide‐Silicon (MNOS) Structures , 1969 .

[19]  Krick,et al.  Nature of the dominant deep trap in amorphous silicon nitride. , 1988, Physical review. B, Condensed matter.

[20]  G. Ingo,et al.  X‐ray photoelectron spectroscopy investigation on the chemical structure of amorphous silicon nitride (a‐SiNx) , 1989 .

[21]  Tatsuo Shimizu,et al.  Calculations of the g‐value and linewidth of the esr signal in amorpous silicon nitride , 1982 .

[22]  Ingemar Lundström,et al.  Discharge of MNOS structures , 1973 .

[23]  J. Stathis,et al.  Observation of multiple silicon dangling bond configurations in silicon nitride , 1989 .

[24]  Composition and Structure Control by Source Gas Ratio in LPCVD SiN x , 1983 .