Mathematical Modeling of Excitable Media in Neurobiology and Chemistry

[1]  A. Winfree Spiral Waves of Chemical Activity , 1972, Science.

[2]  W. Troy Large amplitude periodic solutions of a system of equations derived from the Hodgkin-Huxley equations , 1977 .

[3]  David H. Sattinger,et al.  On the stability of waves of nonlinear parabolic systems , 1976 .

[4]  R. FitzHugh Thresholds and Plateaus in the Hodgkin-Huxley Nerve Equations , 1960, The Journal of general physiology.

[5]  J Rinzel,et al.  Traveling wave solutions of a nerve conduction equation. , 1973, Biophysical journal.

[6]  N. H. Sabah,et al.  Repetitive response of the Hodgkin-Huxley model for the squid giant axon. , 1970, Journal of theoretical biology.

[7]  D. Noble,et al.  Reconstruction of the electrical activity of cardiac Purkinje fibres. , 1975, The Journal of physiology.

[8]  A. Zhabotinsky,et al.  Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System , 1970, Nature.

[9]  J. Cooley,et al.  Digital computer solutions for excitable membrane models , 1965 .

[10]  N. Kazarinoff,et al.  An applicable Hopf bifurcation formula and instability of small periodic solutions of the field-Noyes model , 1976 .

[11]  H. Busse Spatial periodic homogeneous chemical reaction , 1969 .

[12]  S. Hastings ON THE EXISTENCE OF HOMOCLINIC AND PERIODIC ORBITS FOR THE FITZHUGH-NAGUMO EQUATIONS , 1976 .

[13]  A. Winfree,et al.  Scroll-Shaped Waves of Chemical Activity in Three Dimensions , 1973, Science.

[14]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[15]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[16]  S. Hastings SOME MATHEMATICAL PROBLEMS FROM NEUROBIOLOGY , 1975 .

[17]  S. P. Hastings,et al.  On travelling wave solutions of the Hodgkin-Huxley equations , 1976 .

[18]  A. Huxley ION MOVEMENTS DURING NERVE ACTIVITY , 1959, Annals of the New York Academy of Sciences.

[19]  Richard M. Noyes,et al.  Oscillations in chemical systems. V. Quantitative explanation of band migration in the Belousov-Zhabotinskii reaction , 1974 .

[20]  S. Hastings,et al.  The Existence of Oscillatory Solutions in the Field–Noyes Model for the Belousov–Zhabotinskii Reaction , 1975 .

[21]  D. Noble,et al.  The mechanism of oscillatory activity at low membrane potentials in cardiac Purkinje fibres , 1969, The Journal of physiology.

[22]  Kenneth Showalter,et al.  Oscillations in chemical systems. 15. Deliberate generation of trigger waves of chemical reactivity , 1976 .

[23]  Nancy Kopell,et al.  Plane Wave Solutions to Reaction‐Diffusion Equations , 1973 .

[24]  William C. Troy,et al.  Bifurcation phenomena in FitzHugh's nerve conduction equations , 1976 .

[25]  John Evans,et al.  Nerve Axon Equations: II Stability at Rest , 1972 .

[26]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[27]  A. Poore A model equation arising from chemical reactor theory , 1973 .

[28]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[29]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[30]  W. Troy A threshold phenomenon in the Field-Noyes model of the Belousov-Zhabotinskii reaction , 1977 .

[31]  H. A. Antosiewicz,et al.  Automatic Computation of Nerve Excitation , 1955 .

[32]  R. FitzHugh,et al.  Automatic Computation of Nerve Excitation—Detailed Corrections and Additions , 1959 .

[33]  John Evans Nerve Axon Equations: III Stability of the Nerve Impulse , 1972 .

[34]  R. M. Noyes,et al.  Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system , 1972 .

[35]  J. Murray,et al.  On a model for the temporal oscillations in the Belousov‐Zhabotinsky reaction , 1974 .